Presentation Type
Poster
Keywords
Semaphorin 7A, proliferation, migration, human umbilical vein endothelial cells, HUVEC
Department
Biology
Major
Biology
Abstract
Semaphorin 7A (SEMA 7A), a factor originally identified as regulating axon growth, has recently been implicated as a pro-angiogenic factor. The molecular mechanisms for this ability to stimulate angiogenesis have not been identified. This study examines if SEMA 7A can have a direct effect on vascular endothelial cells or whether it indirectly induces angiogenesis through stimulation and recruitment of macrophages as has been suggested. Using human umbilical vein endothelial cells (HUVECs), the ability of SEMA 7A to affect proliferation and migration was examined. HUVECs were exposed to SEMA 7A directly or to conditioned media collected from macrophages exposed to SEMA 7A and a cell proliferation assay was performed. Additionally, the ability of the cells to migrate was also measured using a transwell and a scratch assay. Direct exposure of HUVECs to SEMA 7A resulted in a significant decrease in cell proliferation. Preliminary results also suggest that direct exposure also results in a slight inhibitory effect on the migration of HUVECs. SEMA 7A treatment of macrophages did not result in the production of factors that stimulate HUVECs to proliferate. Additionally, our results suggest that macrophages exhibited a slight stimulation of migration in response to SEMA 7A.
Faculty Mentor
Donna Nofziger Plank
Funding Source or Research Program
Summer Undergraduate Research in Biology
Location
Waves Cafeteria, Tyler Campus Center
Start Date
21-3-2014 2:00 PM
End Date
21-3-2014 3:00 PM
Included in
The regulatory effect of semaphorin 7A on proliferation and migration in human umbilical vein endothelial cells
Waves Cafeteria, Tyler Campus Center
Semaphorin 7A (SEMA 7A), a factor originally identified as regulating axon growth, has recently been implicated as a pro-angiogenic factor. The molecular mechanisms for this ability to stimulate angiogenesis have not been identified. This study examines if SEMA 7A can have a direct effect on vascular endothelial cells or whether it indirectly induces angiogenesis through stimulation and recruitment of macrophages as has been suggested. Using human umbilical vein endothelial cells (HUVECs), the ability of SEMA 7A to affect proliferation and migration was examined. HUVECs were exposed to SEMA 7A directly or to conditioned media collected from macrophages exposed to SEMA 7A and a cell proliferation assay was performed. Additionally, the ability of the cells to migrate was also measured using a transwell and a scratch assay. Direct exposure of HUVECs to SEMA 7A resulted in a significant decrease in cell proliferation. Preliminary results also suggest that direct exposure also results in a slight inhibitory effect on the migration of HUVECs. SEMA 7A treatment of macrophages did not result in the production of factors that stimulate HUVECs to proliferate. Additionally, our results suggest that macrophages exhibited a slight stimulation of migration in response to SEMA 7A.