The Effect of Riparian and Arid Environments on Stomatal Conductance in Baccharis salicifolia and Heteromeles arbutifolia

Danalit Rangel
Pepperdine University

Vicki Mac
Pepperdine University

Ariel Lan
Pepperdine University

Follow this and additional works at: https://digitalcommons.pepperdine.edu/sturesearch

Part of the [Plant Biology Commons](https://digitalcommons.pepperdine.edu/sturesearch)

Recommended Citation

https://digitalcommons.pepperdine.edu/sturesearch/46

This Research Poster is brought to you for free and open access by the Undergraduate Student Research at Pepperdine Digital Commons. It has been accepted for inclusion in Featured Research by an authorized administrator of Pepperdine Digital Commons. For more information, please contact Katrina.Gallardo@pepperdine.edu, anna.speth@pepperdine.edu.
The Effect of Riparian and Arid Environments on Stomatal Conductance in Baccharis salicifolia and Heteromeles arbutifolia

Danalit Rangel, Vicki Mac, Ariel Lan
Pepperdine University Malibu, CA 90263

Abstract
A riparian environment is characterized by higher moisture levels than an arid environment; therefore they have different species of plants that can adapt to their natural habitats. It is critical that we explore the characteristics plants have in relation to their native environments. We propose to test the hypothesis that Baccharis salicifolia would have a higher stomatal conductance rate to water vapor loss compared to Heteromeles arbutifolia because Baccharis salicifolia thrives in a riparian environment in which water abundance would increase stomatal opening thereby contributing to the greater conductance. Using the LI-6400, we measured the conductance rate, photosynthetic rate, CO2 levels internally, CO2 levels of the air, fluorescence, phi PSII, electron transport rate, and qP of Baccharis salicifolia and Heteromeles arbutifolia. Baccharis salicifolia is a riparian species found on the Pepperdine campus, while Heteromeles arbutifolia is an arid species also found on the Pepperdine campus. By comparing the parameters we measured, we can determine the differences in stomatal conductance rate, conductance, fluorescence yield, electron transport rate, quantum yield, and photosynthetic quenching because of the riparian habitat that it is found in.

Introduction
The stomatal conductance of a plant is the process by which a plant releases water vapor concurrently with the intake of CO2. This plays a key role in transporting water throughout a plant. The influx of CO2 is crucial for plants to carry out photosynthesis and survive in its respected environment. The stomatal conductance of a plant is sensitive to a variety of factors. The environment in which a plant grows plays a crucial role in affecting its physiological properties. Two environments in particular, riparian and arid environments, differ vastly in that riparian plants are in a moist, wet area and arid plants are in a more dry environment. This study focuses on the effect of a riparian environment and an arid environment on the stomatal conductance in plants. Studies have shown that plants make adaptations to make possible to thrive in arid environments (Pugnaire and Haase, 1995). We have chosen to study a riparian plant (Baccharis salicifolia) and an arid plant (Heteromeles arbutifolia). We hypothesize that Baccharis salicifolia would have a higher stomatal conductance rate to water vapor loss compared to Heteromeles arbutifolia because Baccharis salicifolia thrives in a riparian environment in which water abundance would increase stomatal opening, thereby contributing to the greater conductance. Previous studies have indicated that stomata of plants are sensitive to water abundance and pressure (Whitehead, 1997). Thus, with a greater water abundance in riparian environments, stomata opening is greater which in turn increases stomatal conductance as well. However, in arid environments, stomata opening is decreased to conserve water which decreases stomatal conductance, an adaptation that these plants must make to survive in a dry environment. Studies in the past have also shown that water stress decreases stomatal conductance in plants (Ackerson, 1979). Previous studies have also shown that stomata utilize negative feedback to respond to water stress, such that they close when water stress is detected (Saltendra et al., 1995). Our hypothesis suggests that a plant in a riparian environment would experience little water stress, thus, its stomatal opening would increase and the stomatal conductance would be greater. On the other hand, a plant in an arid environment is more likely to experience water stress, which would decrease its stomatal opening and in turn, decrease conductance as well. We will test this hypothesis by locating a riparian environment and an arid environment on Pepperdine University’s campus. We will work with the plant Baccharis salicifolia (riparian) and Heteromeles arbutifolia (arid). We will use the LI-6400 gas exchange system to measure the stomatal conductance as well as other measurements such as photosynthetic rate, the Phi Psii value, carbon internal, and fluorescence. We will then gather the collected data and analyze them to see whether H. salicifolia has greater stomatal conductance compared to H. arbutifolia.

Discussion
Using the LI-6400 gas exchange system, we were able to compare conductance of Baccharis salicifolia and Heteromeles arbutifolia. We measured the conductance rate, photosynthetic rate, CO2 levels internally, CO2 levels of the air, fluorescence, phi PSII, electron transport rate, and qP. We took a sample size of seven for both species of plants, expecting to see a difference in their characteristics since they thrive in two different environments. The arid environment was above the lacrosse field on our Pepperdine campus, and the riparian environment has exposed it to water stress, which lowered photosynthesis, fluorescence, phi PSII, electron transport rate, and qP. After calculating a t-test we were able to conclude that the photosynthetic rate, conductance, fluorescence yield, electron transport rate, quantum yield, and photosynthetic quenching were significantly higher in Baccharis salicifolia than Heteromeles arbutifolia because of the riparian habitat that it is found in.

Materials and Methods
• Our sample size is seven for each group of Mule Fat and Hollywood plant.
• The site for Hollywood plant is on Pepperdine campus and by the lacrosse field.
• The site for Mule Fat is the riparian area across the mail office on
• LI-6400 Portable Gas Exchange System is used.
• Environmental parameter is set: CO2 at 400 μmol/mol, flow rate at 100 umol/s, block temperature at 22 °C, PQQuantum at 2000 μmol/m2s.
• We document the values for CO2 of air and internal, photosynthesis, conductance.
• We increase light level to measure leaf performance in response, related values include Fv/Fm, Phi PSII, ETR, and qP.

Results
• Figure 1 shows the difference between photosynthetic rate, conductance, fluorescence yield, and electron transport rate of Baccharis salicifolia and Heteromeles arbutifolia after calculating a t-test with a p-value of less than 0.0001.
• Figure 2 shows the difference between the quantity yield of Baccharis salicifolia and Heteromeles arbutifolia after calculating a t-test with a p-value of less than 0.0001. The photosynthetic quenching of fluorescence t-test was calculated with a p-value of less than 0.02.

Conclusion
• The stomatal conductance in B. salicifolia (riparian) was on average higher than the stomatal conductance in H. arbutifolia (arid).
• B. salicifolia also had a higher photosynthesis compared to H. arbutifolia because there is a correlation between conductance and photosynthesis.
• B. salicifolia is more efficient in water splitting and electron acceptance, which in turn, allows it to have a greater electron transport rate (ETR) and a greater PSII value.
• Our observations show a significant difference between Baccharis salicifolia and Heteromeles arbutifolia due to their location in a riparian versus an arid habitat.
• Important to study the relationship between environment and species characteristics to protect natural habitats.

Literature Cited