2009

Comparison of UVA Absorbance in Sun and Shade Leaves

James Newton
Pepperdine University

Kevin Rivera
Pepperdine University

James Kim
Pepperdine University

Follow this and additional works at: https://digitalcommons.pepperdine.edu/sturesearch

Part of the Plant Biology Commons

Recommended Citation

https://digitalcommons.pepperdine.edu/sturesearch/10

This Article is brought to you for free and open access by the Undergraduate Student Research at Pepperdine Digital Commons. It has been accepted for inclusion in Featured Research by an authorized administrator of Pepperdine Digital Commons. For more information, please contact bailey.berry@pepperdine.edu.
Abstract

In observing chaparral species’ resistance to abiotic plant stresses, this investigation sought to study plant defense against UVA radiation in sun and shade leaves. We predicted that sun leaves would have higher absorbance of UV radiation considering their day-long exposure to sunlight.

UVA (350 nm-400nm) absorbance in sun and shade leaves of *Heteromeles arbutifolia* and *Malosma laurina* were measured using an integrating sphere. Four leaves from each group were surveyed for reflectance and absorbance. Using the spectrophotometer, reflectance in the green wavelengths (500-600 nm) was measured and divided by reflectance in the red (600-700 nm) to give a quantitative estimation of the redness of the samples and thus the anthocyanin content. Samples were cross-sectioned and examined under the microscope to measure cuticle size and determine the location of anthocyanin pigments.

There showed no correlation between either cuticle thickness or amount of red pigmentation and absorbance in the UVA spectrum (R<.05), nor were the sun leaves of either species *H. arbutifolia* and *M. laurina* significantly better at absorbing UVA radiation than shade leaves (P>.05). Anthocyanins were present mainly in the leaves’ palisade layers in each species.

Methods

Samples of red sun leaves and green shade leaves were collected from *Heteromeles arbutifolia* and *Malosma laurina*. From each of these four categories, four large leaves were selected and labeled. The integrating sphere and UV camera were used to measure the UVA transmittance and reflectance of each leaf across a range of 350 nm to 400 nm. Absorbance was calculated from these values using

\[1 = T + R + a \]

(Eq. 1)

Figure 1 shows the averages of the absorbance data relative to each leaf type.

Each leaf sample was analyzed in the spectrophotometer to measure reflectance of green and red light (500-600 nm and 600-700 nm, respectively). Reflectance across the green spectrum was divided by the reflectance across the red spectrum to calculate an inverse anthocyanin index value for each leaf. These specific values were plotted against UVA absorbance, as seen in Figure 3.

Cross sections of each leaf were made and examined under a microscope at 400x zoom. The scope micrometer was standardized using a calibration slide to measure the thickness of each leaf’s cuticle. These data were also plotted against UVA absorbance, which is displayed in Figure 2.

Conclusion

- There is no significant difference between ultraviolet-A absorption and reflectance in sun and shade leaves of *Malosma laurina* and *Heteromeles arbutifolia*. (P>.05, n=3/4)
- No significant correlation between estimated anthocyanin levels under the epidermal layer and UVA absorbance. (R²=.5)
- There is also no significant correlation between cuticle thickness and UVA absorbance. (R²=.5)
- Much of the anthocyanins are found in the palisade layers of both species, dominating much of the pigments present in these layers, by cross-section inspection. Much of the chlorophyll was concentrated below the palisade layers in the mesophyll cells.

Our data suggests that sun leaves have no advantage over shade leaves. However, our small sample size and limited UV range might render our study inconclusive.

Literature Cited

Introduction

Given the extremes of California’s unique Mediterranean climate, its hardy chaparral species have developed several defenses against harmful abiotic stress. For example, many can survive a much lower water potential than plants in other climate types (Jarbeau et al. 1995), and many have adopted resprout and seedling growth mechanisms to withstand wildfire (DeSouza et al. 1986). Our investigation follows this trend, suspecting that defense against UV radiation would be evident in chaparral species, especially since plants are immobile, having to endure day-long exposure to sunlight.

In observing two such species (*Heteromeles arbutifolia* and *Malosma laurina*), it was noted that sun leaves and shade leaves varied in levels of anthocyanin pigmentation. This study was then focused on comparing UV absorbance in sun and shade leaves in chaparral, expecting that sun leaves would have the higher absorbance of the two. Two distinct physiological differences, specifically anthocyanin levels (Woodwall and Stewart 1998) and cuticle width (Solovchenko and Merzlyak 2003), were measured against UV absorbance.

Determining the source of plant defense against UV radiation would have broad implications in human fields, including commercial products and medicine.

Acknowledgements

We would like to thank Dr. Stephen Davis, Marcus Hefner, and the Natural Science Division at Pepperdine University for their support, generosity, and counsel.