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Introduction
Outcomes from research in 2022:
- The goal was to classify three functionally distinct plant cell types 

found in the xylem tissue (Fig. 1):
1. Vessels: Elongate tubes with a large diameter for the passive 

transport of water, which is pulled through the plant by evaporation 
from the leaves. They have a thick secondary cell wall and are dead 
upon maturity, facilitating their function of long-distance transport. 

2. Fibers: Elongate cells that function primarily as mechanical support 
for the stem or root by means of their thick cell walls with a narrow 
lumen.

3. Parenchyma: Short cells that have thin primary cell walls and are 
typically alive at maturity. They function in short-distance transport 
and storage of water and long-term sugar reserves (starch)

- Our objective is to construct a machine learning model that learns the 
features of these plant cell types alongside its surrounding 
characteristics to classify them with high accuracy.

- We propose a faster means of measuring key characteristics of xylem 
anatomy which would greatly broaden the scope of questions that can 
be asked about plant structure and function.

Future Directions: Methods Comparison

Introduction: Measuring vessel diameter (lumen) in plants is important in 
relation to embolism because it provides valuable information about the 
vulnerability of xylem vessels to air bubble formation and subsequent 
water transport disruption. Embolism refers to the occurrence of air 
bubbles or emboli within the xylem vessels, which can impede the 
movement of water and nutrients from the roots to the rest of the plant.
- Studies have shown that vessels with larger diameters are more prone 

to embolism than smaller ones.
- Vessel diameter is heavily studied in drought conditions , where 

embolism vulnerability increases due to increased tension within the 
xylem caused by low water volume

The ratio of the thickness of the cell wall (t) to the vessel lumen diameter 
(b) known as (t/b)2 can be relevant in studies related to mechanical 
strength of the vessels against embolism.
 
We propose a model that can measure lumen diameter and thickness of 
cell wall (by subtracting area of lumen from overall area of vessel), then 
converting relevant areas found in pixels to their respective diameters.

Classification Results

Methods: A new dataset was established to test and enhance 
segmentation ability of the model by varying anatomy and stains applied:
- 10 different plants from each of the 3 different species were chosen 

with different anatomical cross-sections: Malosma laurina (no 
tracheids), Ceanothus spinosus (vasicentric tracheids), and Heteromeles 
arbutifolia (no fibers). 

*Note that vessels and tracheids have been combined under the same 
category in classification and diameter measurements

- 3 different cross sections were obtained from each plant using a 
microtome and were stained differently:
- unstained
- Safranin O-Alcian Blue
- IKI2

- Cross-sections were photographed using a microscope attached to a 
camera at 40x

4 methods are going to be compared to assess the accuracy of the 
machine learning model:

- Developed machine learning model
- Handmade measurements
- MicroCT thresholding (fig. 4)
- ImageJ thresholding (fig. 5)

Segmentation Result (With Cell Wall)

= 0.645

= 0.759

Precision = TP/(TP + FP) = 0.9221 

Recall = TP/(TP + FN) = 0.6910

Pixel Accuracy = 0.9458
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Table 1. These are the scores for each baseline pre-trained convolutional neural networks with the bare 
cropped image inputs, and the cropped image input with contextual assistance.

Fig.3: Illustration of the U-Net’s predicted outputs (TOP) and the ground truth annotations (Bottom). 
While most examples are spatially classified almost perfectly, there are some discrepancies in the 
separation of vessels.

1) Classification

2) Segmentation

Fig. 2: Illustration of our training pipeline, where we utilize 
encoder-decoder U-Net model to extract the vessel masks from raw input 
images.
- Cross-sections from 2022 dataset were annotated using ProCreate, 

a digital art application on the iPad
- In order to create the cross-sections, we used 2 layers on the 

image (white & black) to have a binary mask. 

Discussion
Challenges:
- During the process of annotating vessels with cell walls, we encountered difficulty in annotating two vessels that were conjoined. To address 

this challenge, we used the smallest eraser available, aiming to remove the minimal number of pixels separating the two cell walls in order to 
facilitate recognition of 2 separate objects by the model, which increases inaccuracy.

- When measuring area of cell walls, results are not ideal when focusing on conjoined vessels. Using the same model to obtain area of vessel 
lumens is expected to yield good results with no similar issue. 

- To address some of our challenges, instead of the pixel model we are going to try to use the OpSef open source Python framework for 
segmentation of bioimages in order to have a more accurate and precise tool. It will solve our problems of conjoined cells and will be more 
precise for the cells that are close together. 
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Fig. 1: (A) Chaparral shrub stem cut transversely as to prepare cross sections. 
(B) Micrograph of transverse cross section with labeled cell types. Boxes are 
placed as for cropping. Scale bar = 50 µm.

TP = True positive
FN = False negative
FP = False positive

Fig. 4: MicroCT enables high-resolution 3D imaging 
of xylem vessels

Fig. 5: ImageJ thresholding involves converting an 
image into a binary image to separate objects of 
interest from the background in digital images and 
can be used to obtain xylem vessel measurements 
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