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REVIEW

The influence of carbohydrate ingestion on peripheral and central
fatigue during exercise in hypoxia: A narrative review
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Abstract
Hypoxia impairs aerobic performance by accelerating fatiguing processes. These processes may originate from sites either
distal (peripheral) or proximal (central) to the neuromuscular junction, though these are not mutually exclusive.
Peripheral mechanisms include decrements in muscle glycogen or fluctuations in intramuscular metabolites, whereas
central responses commonly refer to reductions in central motor drive elicited by alterations in blood glucose and
neurotransmitter concentrations as well as arterial hypoxemia. Hypoxia may accelerate both peripheral and central
pathways of fatigue, with the level of hypoxia strongly dictating the degree and primary locus of impairment. As more
people journey to hypoxic settings for work and recreation, developing strategies to improve work capacity in these
environments becomes increasingly relevant. Given that sea level performance improves with nutritional interventions
such as carbohydrate (CHO) ingestion, a similar strategy may prove effective in delaying fatigue in hypoxia, particularly
considering how the metabolic pathways enhanced with CHO supplementation overlap the fatiguing pathways upregulated
in hypoxia. Many questions regarding the relationship between CHO, hypoxia, and fatigue remain unanswered, including
specifics on when to ingest, what to ingest, and how varying altitudes influence supplementation effectiveness. Therefore,
the purpose of this narrative review is to examine the peripheral and central mechanisms contributing to fatigue during
aerobic exercise at varying degrees of hypoxia and to assess the role of CHO ingestion in attenuating fatigue onset.

Keywords: Aerobic fitness, nutrition, performance, environmental physiology

Highlights
. Carbohydrate ingestion may alter fatigue development in hypoxic environments.
. At moderate altitudes, carbohydrate intake may best be used to address peripheral fatigue.
. At extreme altitudes, the efficacy of carbohydrate supplementation likely depends on its capacity to address central fatigue.
. The relationship between carbohydrates, fatigue, and hypoxia is better understood when neurophysiological measures link

interventions with outcomes.

Introduction

Fatigue limits work capacity and the rate of fatigue
development determines the ability to sustain exercise.
Isolating a single physiological factor responsible for
fatigue is difficult and current understanding supports
a multifaceted etiology in which fatigue stems from
peripheral or central loci, and often both concurrently.
Hypoxia accelerates the development of fatigue during
aerobic exercise, eliciting either reductions in exercise

time to exhaustion or a lowering of absolute workload.
Like exercise in normoxia, hypoxia-induced fatigue is
unlikely to be traced to a single locus as both periph-
eral and central mechanisms are enhanced depending
on hypoxia severity (Taylor, Amann, Duchateau,
Meeusen, & Rice, 2016).
In addition to altering fatigue characteristics,

hypoxia also influences substrate utilization – priori-
tizing carbohydrate (CHO) oxidation, particularly
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when absolute exercise intensity is matched between
normoxia and hypoxia (Young,Margolis, & Pasiakos,
2019). Therefore, in seeking to mitigate fatigue and
improve exercise tolerance in hypoxic environments,
bolstering CHO availability through supplementation
represents a rational approach. Given that CHO
ingestion improves endurance performance at sea
level, this strategy may also prove effective in delaying
fatigue in hypoxia, particularly considering how the
metabolic pathways enhanced with CHO supplemen-
tation overlap the fatiguing pathways upregulated in
hypoxia (Karelis, Smith, Passe, & Péronnet, 2010;
Kent-Braun, Fitts, & Christie, 2012; Taylor et al.,
2016). A limited number of studies, however, track
performance outcomes following CHO ingestion in
hypoxia, and data connecting these performance out-
comes with fatiguing processes of peripheral and
central origins is scarcer still. Understanding the
physiological basis by which fatigue etiology
(whether peripheral, central, or a combination of
the two) can be influenced by CHO supplementation
may be useful in predicting scenarios in which CHO
intake has an ergogenic effect. Specifically, if the
physiological factors of exercise- and hypoxia-
related fatigue are influenced by CHO availability,
CHO supplementation may be expected to improve
work capacity. Otherwise, CHO ingestion would be
unlikely to positively influence performance out-
comes in hypoxia.
The aims of this narrative review are: (1) to

describe the current understanding of fatigue devel-
opment in hypoxia, (2) to examine the potential for
CHO ingestion to attenuate peripheral and central
fatigue development in hypoxia, and (3) to hypoth-
esize on the most likely scenarios for CHO ingestion
to influence hypoxia-induced fatigue and thereby
stimulate future research. Literature searches were
conducted on PubMed and Google Scholar using
combinations of keywords and Boolean operators
[for example, (exercise OR running OR cycling OR
fatigue) AND (hypoxia OR altitude) AND (carbo-
hydrates OR diet)]. Emphasis was placed on rigor-
ously conducted experimental trials, reviews, and
meta-analyses. To adhere to reference restrictions,
studies were excluded where results overlapped or
were redundant between studies. The limited
number of studies on this topic, wide disparity in
study design, and differences in carbohydrate admin-
istration in the existing literature preclude rigorous
systematic review and meta-analysis, thus a narrative
review format was selected. Due to the small number
of studies investigating the interplay between CHO,
fatigue, and hypoxia, in cases where primary litera-
ture lacks, we summarize available data and, when
appropriate, anticipate expected physiological out-
comes in light of existing research.

Fatigue

Continual movement results in a progressive
reduction in the force generating capacity of skeletal
muscle, i.e. fatigue. Whereas fatigue is often con-
sidered in light of decrements in performance and
exercise inhibition, performance can be unaltered in
the midst of fatigue if muscle recruitment is enhanced.
Therefore, fatigue may be defined as any transient
exercise-induced decrease in muscular force or
power output with or without task failure (Gandevia,
2001). Though force production ultimately depends
on the contraction of skeletal muscle, disruptions in
the ability of the contractile properties to function
properly may result from a variety of processes. Com-
monly, these processes are described in relation to
their location, either distal (peripheral) or proximal
(central) to the neuromuscular junction.

Peripheral fatigue

Peripheral fatigue originates from mechanisms that
occur at, or distal to, the neuromuscular junction
(Gandevia, 2001). Causative factors of fatigue
within the muscle vary, though research primarily
indicates metabolic inhibition of contractile function.
Factors such as elevations in H+, NH+

4 , and Pi con-
centrations, alteration of Na+-K+ pump function,
impaired regulation of Ca2+ within the myocyte,
buildup of K+ in the transverse-tubular system, exer-
cise-induced muscle damage, and glycogen depletion
can all disrupt cross-bridge function in the skeletal
muscle (Kent-Braun et al., 2012). These factors do
not represent an exhaustive list of metabolites and
processes contributing to peripheral fatigue and for
further understanding we refer the reader to the
review from Kent-Braun, Fitts, and Christie (Kent-
Braun et al., 2012).
While exercise per se provokes fatiguing processes

within the periphery, whether these mechanisms are
responsible for performance decrements depends on
the exercise intensity and modality. Peripheral
fatigue is most apparent during short-duration
(<30 min), high-intensity exercise and exercise with
limited muscle recruitment (e.g. single-limb exercise
or even cycling compared to running) (Millet &
Lepers, 2004).
Instead of picturing autonomous events with a

common endpoint (fatigue), one should instead envi-
sion these factors collectively diminishing work
capacity. Although one individual component may
not elicit exercise termination, the accumulation of
fatiguing events disrupts cellular processes, resulting
in peripheral fatigue and ultimately impairing exer-
cise tolerance. For example, alterations in shortening
velocity may occur as a consequence of increases in

2 H. L. Paris et al.



H+ and ADP. This same rise in ADP may simul-
taneously alter Ca2+ handling in the sarcoplasmic
reticulum (Kent-Braun et al., 2012). Together,
shortening velocity is impacted along with exci-
tation-contraction coupling due to Ca2+ disturb-
ances, and force generating capacity is impaired.

Central fatigue

Central fatigue refers to processes proximal to the
neuromuscular junction that decrease neural drive
to the exercising muscles. Even at rest, limitations
in motor unit recruitment occur, but any additional
impairment in muscle activation from pre- to post-
exercise is a metric for central fatigue (Gandevia,
2001). Much like peripheral fatigue, an array of phys-
iological disruptions contribute to the development
of central fatigue including: hypoglycemia, fluctu-
ations in circulating neurotransmitter concen-
trations, arterial hypoxemia, increases in core
temperature, and reductions in cortical excitability
(Amann, Romer, Subudhi, Pegelow, & Dempsey,
2007; Meeusen, Watson, Hasegawa, Roelands, &
Piacentini, 2006; Nybo, 2003). For a comprehensive
review of mechanisms contributing to central fatigue,
we direct the reader to the work by Meeusen and col-
leagues (Meeusen et al., 2006).
Central fatigue is accelerated in a variety of exercise

scenarios without necessarily being the primary
impetus for exercise termination. Central fatigue
limits performance particularly when exercise is of
long-duration (>60 min) and when locomotion
causes a large amount of muscular stress (e.g. ultra-
marathon running, which would be a combination
of both long duration and full-body exercise)
(Millet & Lepers, 2004). Like the overlap in periph-
eral fatigue, mechanisms of central fatigue are not
isolated and may occur in conjunction with one
another, as well as with fatiguing processes within
the periphery.

Fatigue in hypoxia

As elevation increases, ambient barometric pressure
decreases thereby lowering the partial pressure of
inspired oxygen (PIO2) and resulting in hypobaric
hypoxia. Although altitude ascent is commonly
thought to diminish exercise capacity, decreases in
air resistance accompanying reductions in baro-
metric pressure may actually improve exercise
lasting <4 min (Amann & Calbet, 2008). For exer-
cise >4 min, however, reductions in PIO2 can influ-
ence both peripheral and central pathways thereby
accelerating fatigue development and creating an
environment antagonistic to aerobic performance.

As is the case for fatigue in normoxia, the etiology
of fatigue in hypoxia depends on exercise modality
and intensity. Hypoxia is not an all-or-nothing
phenomenon, and when assessing the primary
origin of fatigue in hypoxia consideration must also
be given to the specific ambient conditions.
Although hypoxic training is often referred to as
“altitude training” this term can be misleading –
tacitly suggesting that either a person is or is not at
altitude. We all live at an altitude, but whether that
elevation acts as a physiological stressor depends
on the severity of altitude and the individual
response.
Different levels of altitude elicit varying physiologi-

cal responses. This is perhaps easiest to appreciate
when considering the effort required to exercise at
1000 m (∼3300 ft) compared to exercising at
4000 m (∼13,000 ft). Severity of altitude may also
be understood when considering the shape of the
oxyhemoglobin dissociation curve. Once over the
shoulder of the curve, even a small reduction in the
PIO2 (e.g. moving from a moderate altitude to a
high altitude) could elicit a large drop in arterial
oxygen saturation, indicating that the physiological
response to one elevation can differ largely from
another, even similar, elevation. Therefore, altitude
classifications have been developed to delineate the
varying degrees of physiological stress. When dis-
cussing hypoxia-induced fatigue we will use the
thresholds established by Bartsch and Saltin
(Bärtsch & Saltin, 2008): “near sea level” (0–
500 m), “low altitude” (500–2000 m), “moderate
altitude” (2000–3000 m), “high altitude” (3000–
5500 m), and “extreme altitude” (>5500 m). We
also note that many studies of hypoxia have
employed normobaric hypoxia, in which the fraction
of inspired oxygen is experimentally reduced to
simulate the severity of hypoxia at a given naturally
occurring altitude (i.e. hypobaric hypoxia). While
historically experimental studies in hypobaric
hypoxia and normobaric hypoxia have been con-
sidered equivalent, recent evidence (Millet, Faiss, &
Pialoux, 2012a) suggests these stimuli may elicit
subtle, but important differences in physiological
responses, and thus hypobaric and normobaric
hypoxia studies should be compared judiciously.
Due to the relatively small number of studies exam-
ining fatigue, CHO, and hypoxia, as well as the
lack of data specifically regarding fatigue and CHO
in normobaric vs hypobaric hypoxia, this narrative
review will not discuss potential differences caused
by normobaric vs. hypobaric environments.
However, we note that future research should be
carefully designed to identify what, if any, differences
exist between normobaric and hypobaric hypoxia
when assessing fatigue and ergogenic aids.

The influence of carbohydrate ingestion on peripheral and central fatigue during exercise in hypoxia 3



Peripheral fatigue in hypoxia

One method by which peripheral fatigue may be
upregulated in hypoxia is through a hastened
accumulation of metabolites connected to fatigue.
Tissue oxygenation regulates cellular processes
during exercise and reductions in PIO2 can increase
lactate, phosphocreatine hydrolysis, Pi, and ADP
(Haseler, Richardson, Videen, & Hogan, 1998). As
previously discussed, accumulation of these metab-
olites impairs excitation-contraction coupling, alters
Ca2+ regulation in the sarcoplasmic reticulum, and
diminishes contractile protein function (Amann &
Calbet, 2008). Importantly, elevations in fatigue-
related metabolites occur independently of changes
in oxygen consumption (V̇O2), demonstrating that
changes in PIO2 alone are enough to alter metabolic
processes and thereby accelerate the rate of periph-
eral fatigue development (Haseler et al., 1998). Con-
tractile function is also impaired by glycogen
depletion and while some have observed a hypoxia-
mediated increase in glycogen utilization (Young
et al., 2019), others report no difference in carbo-
hydrate oxidation following hypoxic vs. sea level exer-
cise (Griffiths et al., 2019). Differences in elevation,
acclimatization, exercise parameters, study popu-
lation, energy balance, and the muscle type being
investigated likely contribute to discrepant findings.
Hypoxia enhances peripheral fatigue, particularly

in environments of low or moderate altitude. Pre-
viously, Amann et al., (2007) had participants
perform a cycling time to exhaustion at ∼80% nor-
moxic peak power output. At this intensity and dur-
ation (∼11 min) performance was primarily limited
by peripheral fatigue. When participants completed
the same exercise at ∼3400 m the time to exhaustion
was reduced (∼5 min), but the magnitude of periph-
eral fatigue at exercise termination was comparable to
that of normoxia. The authors concluded that this
level of peripheral fatigue limited subsequent per-
formance and that moderate hypoxia accelerates
fatigue within the periphery thereby reaching this
threshold sooner.

Central fatigue in hypoxia

In addition to inducing peripheral mechanisms of
fatigue, hypoxia may also accelerate central fatigue
development. Although the association between
arterial hypoxemia and the central nervous system
provides the most apparent relationship between
hypoxia and central drive, hypoxia may also influence
central fatigue by hastening hypoglycemia as well as
altering plasma neurotransmitter concentrations.
Carbohydrate oxidation requires less oxygen per

mole of ATP compared with fat oxidation

(Hochachka et al., 1991). Therefore, when oxygen
becomes limited, CHO oxidation offers a more effi-
cient fuel than oxidation of fats, and individuals
may experience hypoxia-induced shifts in substrate
oxidation, preferentially oxidizing CHO as a fuel.
By prioritizing CHO and increasing the dependency
of skeletal muscle on glucose (Brooks et al., 1991)
hypoxia could thereby potentiate hypoglycemia and
diminish central drive (Nybo, 2003). Additionally,
any hypoxia-induced upregulation in sympathetic
activity could alter neurotransmitter release and
central drive through the cascade of events described
by the serotonin fatigue hypothesis (Meeusen et al.,
2006). Taken together, hypoxia could accelerate
central fatigue development through arterial hypoxe-
mia as well as through hypoxia-induced alterations in
nutrient metabolism.
Kayser, Narici, Binzoni, Grassi, & Cerretelli,

(1994) demonstrated the influence of hypoxia on
central fatigue by having participants cycle to
exhaustion at sea level and 5050 m. When exercise
was performed at high (nearly extreme) altitude
fatigue became more strongly linked with central
mechanisms. At the point of exhaustion, hypoxic
air was replaced by 100% O2 and participants
were encouraged to continue cycling as long as
possible. Supplemental oxygen prolonged exercise
time and altered fatigue characteristics such that
peripheral mechanisms of fatigue became more pro-
minent and reflected fatigue patterns observed
during sea level exercise. Amann et al. (2007) and
Millet, Muthalib, Jubeau, Laursen, and Nosaka
(2012b) extended these findings by showing that,
as the hypoxic environment became progressively
more severe (i.e. as elevation continued to rise
and arterial hypoxemia intensified), central fatigue
contributed a larger role in exercise termination.
Taken together, data demonstrate that in moderate
hypoxia the periphery remains the dominant
location of fatigue and primary influence for exer-
cise termination but at extreme altitudes perform-
ance becomes more dependent on central
mechanisms (Amann et al., 2007).

Crosstalk in fatigue etiology

Altitude severity and duration of exposure exist
alongside exercise modality and exercise intensity in
determining fatigue development. We could expect,
for example, a hastening of peripheral fatigue
during high intensity exercise in moderate hypoxia.
When exercise is performed under conditions that
amplify both loci of fatigue [e.g. a 90 min run
(central) at moderate hypoxia (peripheral)] central
and peripheral mechanisms likely coexist and influ-
ence one another. For example, we might ask

4 H. L. Paris et al.
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whether single limb exercise (peripheral) is altered at
extreme altitude (central). At ∼6000 m handgrip
strength (normally limited by peripheral factors) is
reduced, exemplifying how altitude can alter the pat-
terns of fatigue. Maximal typing frequency, however,
is unaffected at this same elevation, indicating the
importance that exercise intensity has, even within
certain environmental conditions and muscle mass
recruitment (Rasmussen et al., 2007).
Table I displays the primary locus of fatigue for

various elevations and exercise protocols, demon-
strating both the general understanding of how alti-
tude influences fatigue, as well as the subtleties of
exercise type and intensity existing within this
context. In viewing Table I, it is important to dis-
tinguish between the primary locus of fatigue and
the crosstalk in fatigue development between
central and peripheral locations. For example,
because moderate hypoxia accelerates peripheral
fatigue development, if power output is maintained
between normoxia and moderate hypoxia, thresholds
of peripheral fatigue will be reached faster in hypoxia.
Therefore, when completing a time-trial in moderate
hypoxia, power output is necessarily reduced
compared to normoxia such that the limitations of
peripheral fatigue are not reached until the end of
the time-trial. Reductions in power output elicited
by hypoxia may be mediated by limiting central
drive to the periphery, but because peripheral limit-
ations are directing central output, peripheral mech-
anisms remain the primary stimulus of fatigue

development at moderate altitude. Conversely, at
extreme altitude central fatigue dominates and exer-
cise termination will occur prior to reaching periph-
eral limitations.

Carbohydrate ingestion for the attenuation of
fatigue in hypoxia

Each year a growing number of individuals ascend to
higher altitudes for recreational and occupational
activities where they face potential reductions in
work capacity elicited by the hypoxic environment.
Developing a strategy to counteract hypoxia-
induced fatigue is therefore increasingly relevant.
The importance of CHO as a fuel for exercise has

been known since at least the early 1900s (Asmussen,
1971) and numerous investigations have recorded
improvements in endurance performance following
CHO intake. For a review on CHO supplementation
as an ergogenic aid, the work by Coggan & Coyle
(1991) remains a flagship article thirty years after
publication. As previously mentioned, CHO oxi-
dation provides more ATP for a given amount of
oxygen compared to fat and when absolute exercise
intensity is maintained, hypoxia elevates the rate of
glycolysis compared to sea level activity (Lundby &
Van Hall, 2002). Because hypoxia reduces
V̇O2max, the greater contribution of CHO in
hypoxia could reflect changes in relative exercise
intensity when maintaining absolute workload
between normoxia and hypoxia. Discussions

Table II. Summary of select human‡ experimental studies examining the influence of carbohydrate supplementation on exercise
performance∗ in hypoxia of various severities

Exercise duration

Altitude
0–

2 min 2–30 min 30–60 min 60–120 min > 120 min

Extreme
(>5500 m)

No studies found for extreme altitude

High
(3000–
5500 m)

✓ Consolazio (1969) †

✓Oliver, Golja, and Macdonald
(2012)†

× Caris, Da Silva, Dos Santos, Tufik,
and Dos Santos (2017) #

× Bradbury et al. (2020) †

✓ Askew et al.
(1987) ^

✓ Fulco et al.
(2005) ^

× Fulco et al.
(2007) ^

× Bourrilhon et al.
(2010) #

Moderate
(2000–
3000 m)

× Liao, Mündel, Yang, Wei,
and Tsai (2019) ^

× Bourrilhon et al.
(2010) #

Low
(500–
2000 m)

✓ Slivka, Hailes, Cuddy, and
Ruby (2008) †

✓ Little et al.
(2010) †

‡For a review on animal studies pertaining to carbohydrate supplementation in hypoxia, please refer to work by Mitchell and Edman (1949);
∗studies must contain performance outcome compared to placebo or alternative supplementation; a checkmark sign (✓) represents
carbohydrate ingestion exerting a positive influence on performance; × represents no influence or a negative influence on performance.
Regarding the timing of CHO ingestion relative to performance: †, CHO ingested prior to performance; #, CHO ingested during
performance; ^, CHO ingested both prior to and during performance.

6 H. L. Paris et al.



continue regarding the merits of using absolute vs.
relative intensity when investigating hypoxia-
induced alterations in macronutrient oxidation (Grif-
fiths et al., 2019; Young et al., 2019). Practical appli-
cation likely favours fixing exercise according to
energetic demands and absolute intensity (Young
et al., 2019), which indicates a hypoxia-mediated
increase in CHO use. If ascending to higher altitudes
does elevate CHO oxidation, supplementing with
additional CHO represents one possible approach
to attenuating fatigue in this environment. Indeed,
based primarily on the upregulation of CHO oxi-
dation in hypoxia, dietary guidelines for altitude
ascension commonly suggest CHO supplementation
(Stellingwerff et al., 2019). As shown in Table II,
however, studies reporting performance outcomes
following CHO supplementation in hypoxia are
scarce and conclusions equivocal. If CHO sup-
plementation improves work capacity in hypoxia,
the ergogenic benefits could work through a variety
of pathways depending once more on exercise speci-
fics. Altitude severity and hypoxic dose (as discussed
later) may also dictate the CHO mechanisms of
action, potentially delaying both peripheral and
central fatigue.

Carbohydrate ingestion & peripheral fatigue in
hypoxia

Carbohydrate ingestion can improve exercise
capacity otherwise limited by peripheral fatigue [e.g.
high intensity exercise ∼80% V̇O2max (Jeukendrup,
Brouns, Wagenmakers, & Saris, 1997)], demonstrat-
ing the potential for CHO supplementation to inter-
act with peripheral pathways. Supplementation may
spare endogenous CHO stores, and if ingestion pre-
serves muscle glycogen peripheral fatigue could be
diminished. Preservation of glycogen through
exogenous supplementation remains speculative,
however, and may depend on exercise intensity and
duration. Some evidence questions the capacity of
CHO intake to spare muscle glycogen altogether
(Coggan & Coyle, 1991). Despite conflicting
reports, the physiological plausibility of CHO sup-
plementation sparing muscle glycogen remains a
putative mechanism by which CHO ingestion may
attenuate peripheral fatigue development. Additional
pathways by which CHO ingestion could delay
peripheral fatigue include alterations of NH+

4
(Carvalho-Peixoto, Alves, & Cameron, 2007), pres-
ervation of membrane excitability and Na+-K+-
ATPase activity (Stewart et al., 2007), and perhaps
retention of sarcoplasmic reticulum function (Xu,
Zweier, & Becker, 1995). For a more in-depth under-
standing of how CHO may influence peripheral (and

central) mechanisms at sea level, we recommend the
work of Karelis et al. (Karelis et al., 2010).
For exercise at sea level, the ergogenic benefits of

CHO on work capacity are well established and evi-
dence suggests CHO supplementation delays per-
ipheral fatigue especially when fatigue etiology is
related to conduction of the action potential
through the sarcolemma and T-tubules (Stewart
et al., 2007).
Inquiry into how hypoxiamight alter the CHO-per-

ipheral fatigue relationship is an additional question,
requiring quantification of fatigue following CHO
intake and hypoxic exercise. Data from our labora-
tory (Paris et al., 2019) demonstrate that while a 1
h run at 65% of sea level V̇O2max elicits peripheral
fatigue, neither moderate hypoxia nor CHO sup-
plementation (6% dextrose solution ingested every
15 min) influence peripheral fatigue development.
Therefore, though pathways exist whereby CHO sup-
plementation can delay peripheral fatigue in hypoxia,
the specific mechanism of fatigue may dictate the effi-
cacy of CHO ingestion.

Carbohydrate ingestion & central fatigue in hypoxia

Carbohydrate intake can influence central drive
specifically by preserving blood glucose, affecting
neurotransmitter release, and attenuating arterial
hypoxemia. Although the ergogenic benefits of
CHO intake are frequently attributed to maintaining
euglycemia during prolonged exercise (Coggan &
Coyle, 1991), by interacting with circulating amino
acids, supplementation may also influence neuro-
transmitter release (Davis et al., 1992). Regarding
arterial hypoxemia, CHO ingestion can preserve
lung diffusing capacity (Dramise et al., 1975), stimu-
late ventilation (Charlot, Pichon, Richalet, & Chape-
lot, 2013), and conserve arterial oxygen content
(Charlot et al., 2013), though results lack consistency
(Bradbury et al., 2020; Paris et al., 2019).
Under sea level conditions, CHO ingestion was

thought to influence performance via central path-
ways as early as 1936 (Coggan & Coyle, 1991). A
2016 review on CHO and central fatigue, however,
concluded that after eighty years of suspecting the
crosstalk between CHO intake and central mechan-
isms, neurophysiological outcome measures depict-
ing the relationship between CHO intake and
central drive remain inadequate to definitively link
CHO consumption with attenuation of central
fatigue (Khong, Selvanayagam, Sidhu, & Yusof,
2017). Still, existing data suggest that central
fatigue is delayed particularly when CHO sup-
plementation prevents hypoglycemia (Nybo, 2003;
Stewart et al., 2007).

The influence of carbohydrate ingestion on peripheral and central fatigue during exercise in hypoxia 7



Years of observation support the conclusion that
carbohydrate metabolism and aerobic processes find
common ground in the central nervous system. In
1940 McFarland and Forbes (1940) reported that,
“The functioning of the central nervous system
appears to depend upon a continuous and adequate
supply of oxygen and glucose. When the concen-
tration of either of these substances in the blood is
lowered… there is significant impairment in cerebral
function.” Here, we see the intersection between
CHO and hypoxia on central activation. For CHO
to effectively promote central drive though, sup-
plementation must directly address the central mech-
anisms of fatigue. For example, although CHO
ingestion had no effect on the development of
central fatigue when running for 1 h at a moderate
hypoxia (Paris et al., 2019), arterial oxygen saturation,
neurotransmitter precursors, and blood glucose
remained unaltered by CHO intake. If CHO is to
promote work capacity by delaying central fatigue it
must be capable of altering these mechanisms.

Carbohydrates for fatigue in hypoxia –
proposed influence

Supplementing with CHO for hypoxia- and exercise-
induced fatigue should be considered specifically

when exercise is limited by CHO-related phenom-
ena. Thus, in cases where CHO availability is linked
to accelerated fatigue development there is a physio-
logical basis for CHO supplementation attenuating
fatigue development and perhaps exerting an ergo-
genic effect. In cases where CHO availability does
not influence the mechanisms of exercise limitation,
however, we would expect no benefit from CHO
ingestion. For example, some evidence demonstrates
a failure of glucose supplementation to influence
PCr, Pi, ADP, and AMP when ingested every 15
min during 2 h of cycling exercise to exhaustion
(Duhamel et al., 2007). Therefore, if fatigue is due
primarily to these metabolites we might question
the use of CHO as an ergogenic aid.
For CHO ingestion to attenuate fatigue in hypoxia

via preservation of peripheral pathways, exercise need
be limited by peripheral mechanisms linked with
diminished CHO. Short duration exercise at moder-
ate altitude (and perhaps even high altitude) is likely
limited by peripheral factors other than CHO avail-
ability (Karelis et al., 2010) and we would not antici-
pate CHO ingestion improving performance under
these conditions. Indeed, Bradbury et al. (Bradbury
et al., 2020) found no difference in two-mile run per-
formance (∼20 min of running following 80 min of
walking) when ingesting either CHO or a placebo at
high altitude. If this same experimental setup were

Figure 1. Overview of anticipated connections between exercise- and hypoxia-induced fatigue and attenuation of fatigue via carbohydrate
ingestion. Above 5500 m, fatigue is strongly linked with central drive whereas below 5500 m peripheral mechanisms limit exercise perform-
ance (depending on the intensity, duration, and type of exercise). Below 5500 m, carbohydrate supplementation during exercise may attenu-
ate fatigue development by preserving membrane excitability and perhaps addressing glycogen depletion. Above 5500 m, CHO ingestion
could address central fatigue by delaying hypoglycemia and attenuating arterial hypoxemia. This relationship is further complicated when
considering the influence of hypoxic dose on fatigue development and substrate metabolism. Water bottle symbol, carbohydrate supplemen-
tation; solid line, well established relation; dashed line, limited or conflicting evidence.
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transferred to extreme altitude, however, where
fatigue becomes more limited by central pathways,
and if CHO can maintain arterial oxygenation, per-
formance could improve. Similarly, attempting to
attenuate central fatigue in hypoxia through CHO
ingestion should be considered when common, phys-
iological ground is established between the locus of
fatigue in hypoxia and the mechanism addressed
through CHO supplementation.
The efficacy of CHO intake depends on the origin

of fatigue, which itself is partially contingent upon
altitude severity. Figure 1 demonstrates the theo-
rized, mechanistic connections between CHO inges-
tion and attenuation of fatigue at various elevations.
Because moderate hypoxia elevates peripheral
fatigue, CHO ingestion will be most effective when
addressing peripheral mechanisms. Conversely, due
to the relationship between extreme altitude and
central fatigue, CHO ingestion will effectively
improve performance at extreme altitude by addres-
sing central pathways. If CHO supplementation
cannot address the locus of central fatigue (e.g. if it
fails to preserve arterial oxygenation), then it will
have little influence on performance outcomes in
extreme hypoxia. Applying this hypothesis may look
as follows: a recent review on nutrition in hypoxia
(Stellingwerff et al., 2019) highlighted a lack of
studies investigating nutritional interventions for per-
formance at moderate altitude (the elevation of most
relevance for individuals training towards sea level
performance). We would expect moderate hypoxia
to enhance peripheral mechanisms of fatigue. If
hypoxia severity, exercise intensity, and exercise dur-
ation elicit a fatigue related especially to glycogen
depletion or impaired action potential conduction,
CHO supplementation should be considered for per-
formance enhancement.
Although direct investigations on the interaction of

CHO, fatigue, and hypoxia are limited, some studies
have examined the influence of CHO on performance
in hypoxia. Table II lists all the studies we identified
where CHO ingestion was compared against a
placebo or alternative supplement for its ergogenic
effects above 500 m. Although data on fatigue is
limited, if we consider performance outcomes in
these studies, a few themes arise. First, data support
CHO supplementation for low-altitude events
lasting around 60 min. Given the lower elevation,
the mechanisms behind this may reflect those
observed when exercising at sea level. Second,
despite the numerous ultraendurance events taking
place at higher elevations, little is known regarding
the efficacy of CHO ingestion under these conditions.
Although Bourrilhon et al. (Bourrilhon et al., 2010)
found that a CHO-based diet ingested during exercise
did not improve ultraendurance climbing

performance compared to a protein-based diet, the
protein diet still contained 7.6 g kg−1 CHO, thus
making conclusions for prolonged exercise difficult.
On the opposite end of the duration spectrum, no
data could be foundexamininghowCHOsupplemen-
tationmight influence fatigue in hypoxia for short dur-
ation events. Just as exercise duration could influence
CHO efficacy, so too might duration of hypoxic
exposure. The relationship between altitude severity
and duration of exposure has been referred to as the
“hypoxic dose” (Garvican-Lewis, Sharpe, & Gore,
2016; Wilber, Stray-Gundersen, & Levine, 2007).
Given that the magnitude of hypoxic dose likely
affects physiological adaptations to high altitudes
(Garvican-Lewis et al., 2016; Wilber et al., 2007),
perhaps hypoxic dose also influences the physiological
response to CHO supplementation – where chronic
exposure to hypoxia impacts absorption, delivery,
and patterns of macronutrient oxidation compared
to acute exposure. Lastly, we remain uncertain
about the possible influence of CHO on fatigue
above 5500 m and can only speculate as to the poten-
tial mechanism at these extreme elevations (Figure 1).
Ultimately, even given the same elevation and dur-
ation of exercise, CHO might influence performance
differently. These differences may be explained by
nuances such as sex, normobaric vs. hypobaric
hypoxia, and energy balance.
Regarding energy state, hypoxia has been shown to

alter energy expenditure and cause hypophagia
leading to a negative energy balance (Butterfield
et al., 1992). Altitude-induced anorexia is partially
attributable to alterations in hormones such as
ghrelin and insulin, which may then influence sub-
strate metabolism (Debevec, 2017; Macdonald
et al., 2009; Matu, Gonzalez, Ispoglou, Duckworth,
& Deighton, 2018). While some studies allow for,
or even mimic this energy deficit (Bradbury et al.,
2020) others attempt to distinguish the effect of
hypoxia vs. hypoxia + energy deficit by maintaining
energy balance (Brooks et al., 1991). This may par-
tially explain why some people experience perform-
ance improvements following CHO ingestion in
hypoxia (Fulco et al., 2005) whereas others see no
improvements given the same level of hypoxia and
the same exercise task (Fulco et al., 2007).

Future directions

Up to now, we have referred to supplementation
merely as “CHO ingestion,” but logistical consider-
ations abound. For example, the timing of CHO
intake is of particular relevance as recent evidence
suggests that CHO absorption is compromised at
high altitudes (O’Hara et al., 2019). By inhibiting
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CHO absorption altitude ascension may prioritize
pre-hypoxic CHO loading instead of relying on
CHO consumption during exercise. When applying
these questions specifically to fatigue, further ques-
tions arise. Knowing that insulin regulates neuro-
transmitter precursors linked with central fatigue
(Martin-Du Pan, Mauron, Glaeser, & Wurtman,
1982), how might hypoxia-mediated changes in
insulin sensitivity and the insulin-response to CHO
ingestion alter neurotransmitter concentrations and
central drive? In addition to timing, the type and
dosage of CHO exemplify additional areas of uncer-
tainty. Though particulars on CHO supplementation
have been established for sea level performance (Jeu-
kendrup, 2014), hypoxia acts as an additional, unique
variable and no doubt requires specific research
determining how sea level recommendations uphold
in hypoxic scenarios. A recent review on dietary rec-
ommendations when cycling at higher altitudes
(Michalczyk, Czuba, Zydek, Zając, & Langfort,
2016) noted the difficulty in providing precise

suggestions to athletes, particularly because of the
wide range in elevations cyclists may travel to for
training and competition. Therefore, recommen-
dations on intake should also consider hypoxia sever-
ity (e.g. Is the physiological response to a glucose
solution the same at sea level as in moderate altitude,
high altitude, and extreme altitude?).
Finally, further complicating understanding for the

role of CHO supplementation on fatiguing pathways
in hypoxia, we must recognize that, instead of being
an either-or phenomenon, fatigue is most likely a
both-and occurrence, and peripheral mechanisms cer-
tainly influence central pathways. In Table III we
offer specific questions regarding many of the afore-
mentioned variables (acclimatization, substrate util-
ization, timing of CHO intake, etc.) which require
clarification if CHO ingestion in hypoxia is to be opti-
mized. Many of the more salient questions, such as
those regarding absorption, utilization, and carbo-
hydrate efficacy at various levels of hypoxia, are cur-
rently under investigation and additional data will

Table III. Future research directions investigating the influence of carbohydrate ingestion on fatigue development in hypoxia across various
themes

Theme Future research directions

Acclimatization & individualized
responses

Do altitude natives differ in fatigue characteristics and responsiveness to carbohydrate supplementation
vs. those ascending from sea level? (Fulco et al., 2007)

Do women differ in fatigue characteristics and responsiveness to carbohydrate supplementation vs.
men?

How does duration of altitude exposure change fatigue characteristics and efficacy of carbohydrate
ingestion? (Bradbury et al., 2020)

How does hypoxia-related energy deficit influence carbohydrate response and should this energy deficit
be replicated when using long-term exposure? (Bradbury et al., 2020)

Macronutrient utilization Is macronutrient metabolism altered in hypoxia when relative exercise intensity is maintained vs.
absolute exercise intensity?

Are changes in macronutrient metabolism linearly related to ascending altitudes, e.g. as elevation
increases does RER change in a stepwise, linear manner?

How does an increases reliance on carbohydrate interact with possible reductions in insulin sensitivity to
influence carbohydrate supplementation efficacy?

Severity of altitude How does absorption, utilization, and carbohydrate efficacy change when transitioning through various
levels of hypoxia?

Does high altitude act as a hybrid of moderate and extreme altitude and influence both central and
peripheral equally? (Amann et al., 2007)

Is there an individual response to fatigue at altitude, e.g. do some experience accelerations in central
fatigue at high, or even moderate, altitudes and does this influence the efficacy of CHO
supplementation?

In exercise scenarios that alter both peripheral and central pathways of fatigue (e.g. full body exercise, of
prolonged duration, at moderate hypoxia), what fatiguing mechanism takes priority?

Content, Dose, and Timing Does glycemic index alter the influence on fatigue?
Application of current recommendations for dosage, as well as exercise duration to hypoxic setting.

(Jeukendrup, 2014)
Does ingesting carbohydrate in the minutes, hours, or days before hypoxic exposure offer varying

influence on hypoxic response vs. carbohydrate ingestion during exercise? (Charlot et al., 2013)
How does altitude exposure influence carbohydrate absorption and fatigue responses? (O’Hara et al.,

2019)
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provide a more comprehensive understanding. These
questions should be considered in the design of
future studies on CHO ingestion, fatigue, and per-
formance in hypoxia.

Conclusions

Work capacity is limited by fatigue originating from
peripheral and central mechanisms. Peripheral mech-
anisms of fatigue include reductions in muscle glyco-
gen as well as alterations in intramuscular metabolites
such as NH+

4 , Pi, and K+, whereas central fatigue is
often associated with hypoglycemia, alterations in cir-
culating amino acid concentrations, and arterial
hypoxemia. Both peripheral and central pathways
can be accelerated by hypoxia, further limiting work
capacity.
Due to mechanistic overlaps between fatigue,

hypoxia, and CHO oxidation, CHO supplementation
has emerged as a potential approach for improving
exercise tolerance in hypoxic environments. CHO
supplementation should be considered in hypoxic
settings specifically when the mechanisms of exer-
cise- and hypoxia-induced fatigue align with CHO
availability. At moderate altitudes, where peripheral
fatigue dominates, increases in work capacity follow-
ing CHO ingestion are likely accounted for by preser-
vation of muscle glycogen and membrane
excitability. Extreme altitude alters central drive and
CHO intake can influence fatigue development
under these conditions particularly by maintaining
blood glucose. Ultimately, questions remain regard-
ing the interaction between hypoxia, fatigue, and
CHO. Future research will characterize the develop-
ment of peripheral and central fatigue following CHO
ingestion and exercise performance across varying
degrees of altitude to address whether CHO sup-
plementation contributes to the sweet taste of reach-
ing the top of the mountain.
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