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Abstract: Research and development (R&D) has a large effect on both state output and total 

factor productivity (TFP) in the long run. Our estimates for the private sector of the U.S. states 

from 1963 to 2007 show that the R&D elasticity averages 0.056 to 0.143. The implied returns to 

state Gross Domestic Output (GDP) from R&D spending are 82% to 211%. There are also 

positive R&D spillovers, with 70% to 80% of the total returns accruing to other states. We also 

find that states with more human capital have higher own- and other-R&D elasticities, and those 

in lowest tier of economic development have the least own-state R&D elasticity but the highest 

other-R&D elasticity. In addition, we find that the positive effect of R&D spillovers across states 

is larger when we consider R&D spillovers across states based on economic similarity of R&D 

across sectors.  
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1. Introduction 

Research and development (R&D) is an important contributor to economic growth. R&D 

spending leads to growth through its positive effect on innovation and total factor productivity 

(TFP) (Romer, 1990). Improvements in technology through industrial innovation have been the 

driving force behind the inexorably rising standards of living in the developed world over the 

long run (Grossman and Helpman, 1994). When a firm invests in R&D, new ideas, intermediate 

goods, methods to reduce costs, and final consumer products can be developed, allowing the firm 

to become more efficient and profitable. In addition to the private benefits of R&D, there are 

positive spillovers within and among firms, industries, and geographic regions. Knowledge 

developed through R&D is non-rival, so that firms can benefit from the R&D investment of other 

firms, even when they are in different industries or regions (Arrow, 1962; Aghion and Howitt, 

1992). This study attempts to quantify the effects that R&D spending has on economic growth 

and productivity. 

Measuring the contribution of R&D to economic growth takes care, however, for there is 

great dispersion in both R&D activity and economic growth across nations. For example, R&D 

spending as a share of Gross Domestic Product (GDP) in 2009 was 4.7% in Israel, 3.6% in 

Sweden and South Korea, 3.4% in Japan, and 2.9% in the United States.1 While some of these 

countries had robust growth during the 2000s, Japan did not, and the United States had modest 

economic growth at best. Brazil, Russia, China, Italy, and Spain, had R&D shares that were less 

than half as much as the United States, and some (but not all) of these countries grew at a much 

quicker pace than the United States. There is also little apparent correlation between R&D 

intensity and U.S. state GDP growth. Bivariate pooled OLS regression of the log change in real 
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GDP by state, which we refer to as State GDP (SGDP), on the R&D share of GDP yields no 

significant relationship over the years 1966 to 2007.2 The relationship between contemporaneous 

R&D spending and economic growth appears to be highly variable. 

We study the impact of R&D performed by industry on private sector output and TFP in 

the United States during the period 1963-2007. There are four key features of our study. First, 

ours is the first study to our knowledge to examine the impact of total private R&D on the 

aggregate economies of the U.S. states. For our analysis, we build a state-level panel dataset for 

the period 1963-2007. R&D spending is an investment in a durable good: knowledge. Thus, we 

construct state-level stocks of knowledge (depreciated R&D) for the estimations, which Romer 

(1986, 1990) argues is the appropriate input to the production function. 

Second, our analysis also quantifies the spillover effect of R&D across states. Knowledge 

generally cannot be contained within borders, and firms in one state or country benefit from 

industrial knowledge produced by R&D performed elsewhere (Coe and Helpman, 1995). Our 

methodology allows for and measures such R&D externalities. 

Third, we choose empirical methodology to assess the long run effects of R&D in the 

economy. The R&D stock is a determinant of the long-run trend component of TFP, but may 

have little to do with the short-run deviations from trend, as demonstrated by the pooled 

regression mentioned above. Much of the short-run variation in output and TFP is caused by 

fluctuations in the utilization of capacity in industry (Griliches and Lichtenberg, 1984). As Coe 

and Helpman (1995) and Hall and Jones (1999) argue, estimating the long-run relationships 

between R&D, output, and TFP requires methodology that exploits the information conveyed by 

shared trends in these variables. We therefore estimate cointegrating relationships among the 

data. 
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Fourth, we examine data from a large collection of related but distinct economic areas all 

sharing a common set of institutions and general level of economic development: the U.S. states. 

The general level of economic development, the strength of institutions, and attitudes toward 

risk-taking and entrepreneurship can greatly affect the relationships among R&D, innovation, 

and growth. By examining U.S. states instead of different countries, the number of complicating 

factors in the causal relationship between investment in knowledge and growth is reduced 

greatly. Nevertheless, we also look for heterogeneity in the impact of R&D among states with 

differing levels of human capital and economic output. 

Our analysis shows that the R&D stock has a positive, sizeable, and significant long-run 

effect on output and TFP. Our baseline estimate of the elasticity of output to the stock of R&D in 

the state are 0.056, and ranges up to 0.143 in other specifications. These bounding elasticities are 

associated with own-returns to GDP in a state to R&D spending of 83% and 213%, respectively. 

It also appears that the own-elasticity for R&D increased slightly after 1993. We also find that 

there are positive R&D spillovers across states in the long run: on average, about 77% of total 

GDP created from R&D investment spills over to other states in the baseline estimation. Unlike 

the own-elasticity, the spillover elasticity for out-of-state R&D appears to be stable during our 

period of study. We also find that the direct and spillover effects of R&D vary with the levels of 

human capital and economic output in the state. In addition, we find that the positive effect of 

R&D spillovers across states is larger when we consider R&D spillovers across states based on 

economic similarity and relevance of R&D across sectors. 

The paper is organized as follows. In Section II, we provide a literature review where we 

outline the theory and empirical work related to the links between R&D, output, and 
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productivity. In Sections III and IV we discuss the data and methodology, respectively. Section 

V presents the results, and Section VI touches on policy implications and concludes. 

2. Literature Review 

What is the link between R&D and productivity growth? Private R&D expenditure 

contributes to the public stock of knowledge, leading to spillovers resulting in greater aggregate 

output (Romer, 1986). Sustained economic growth requires technological change, which results 

from investment in R&D and the attendant spillovers (Griliches, 1992; Grossman and Helpman, 

1994). Empirical studies on the impact of R&D have been performed at several levels of 

analysis: the firm, industry, region, or country. Firm level analyses typically find rates of return 

to R&D that are generally in the range of 20% to 30%, but may be as high as 75%.3 R&D own-

elasticity estimates from industry studies tend to be close to those from firm-level data. 

Estimated rates of return based on aggregate production functions for entire countries (or 

regions) tend to be higher, since they internalize all intra-country (or region) spillovers among 

firms and industries. The studies using panel data on countries cited in Hall et al. (2010) have 

R&D own-elasticity estimates ranging from 0.01 to 0.22, resulting in rates of return from 6% to 

123%. 

The present study follows most closely previous empirical analyses at the regional 

(Bronzini and Piselli, 2009) or country (Nadiri 1980) level. These studies measure the impact 

that R&D expenditure has on productivity and growth on the specific region or country where 

R&D expenditure originates, and some studies also look for spillovers to other areas. Coe and 

Helpman (1995) found that both domestic and foreign R&D stocks are critical for explaining 

greater productivity and economic growth in Organisation for Economic Co-operation and 
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Development (OECD) countries during1971-90. They posit that R&D from abroad could have a 

direct positive effect on domestic productivity through the development of new technologies and 

processes and an indirect positive effect through the importation of higher quality intermediate 

goods. Bayoumi et al. (1999) and Coe et al. (1997) also emphasize the role of trade in 

international R&D spillovers. Given the large amount of interstate trade within the United States, 

as well as the prevalence of multistate R&D performing firms, we therefore expect to find that 

significant cross-state R&D spillovers. R&D spillovers are often found to be stronger from 

nearby areas; e.g. in the regional work of Bronzini and Piselli (2009), Frantzen’s (2000) study of 

OECD countries, and other work (Jaffe et al., 1993; Aiello and Cardamone, 2008). In our study 

we thus allow spillovers to enter the econometric model through various forms of spatial lags. 

Coe and Helpman (1995) were the first to investigate R&D and growth using a 

framework of cointegrated panel data. Kao et al. (1999) and Coe et al. (2009) corroborate the 

findings of Coe and Helpman (1995) that R&D has a positive direct and cross-border spillover 

effects on TFP. Like Kao et al. (1999), we differentiate the short and long run effects of R&D on 

output and productivity. Coe et al. (2009) in addition highlight that differences among nations in 

institutions that affect the environment for doing business can be important determinants of R&D 

spillovers across countries. We largely sidestep this issue by using data from within a single, 

relatively institutionally homogeneous and integrated country, the United States. Coe et al. 

(2009) show that countries with high levels of human capital and a better environment for doing 

business benefit the most from domestic and international R&D. We also find that states with 

more human capital benefit the most from in-state and out-of-state R&D.  

The latest strand of the literature on R&D and productivity examines regional data and 

examines spatial aspects of the relationship closely (Bronzini and Piselli, 2009; Wu, 2010). 
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Subnational studies are important because much recent work shows that geographical proximity 

is important for transmitting knowledge, given that much learning is localized (see Audretsch 

and Feldman, 2004). Bronzini and Piselli (2009) find that R&D has a positive effect on 

productivity in Italy and that the R&D stock in one region affects productivity levels in nearby 

regions. Our paper follows the spirit of Bronzini and Piselli’s (2009) approach, although our 

choice of econometric method differs. While interstate research spillovers have been examined 

in the agricultural sector (e.g., Deininger, 1995; McGunn and Huffman, 2000; Alston et al., 

2010), to our knowledge there is no empirical work that estimates the impact of R&D on 

aggregate output or productivity at the state level in the United States. This is no doubt due in 

part to a lack of enough R&D data at the state level in the past. We discuss in the next section 

our methods used to create a set of panel data for R&D expenditure and the stock of knowledge 

in the U.S. states, as well as other data used in our analysis. 

 

3. Data 

To estimate the parameters of the aggregate production function for states, we require 

data on output, R&D, labor, and physical and human capital. For the TFP equation, we require 

the labor and capital shares in addition. Our sample includes data from 50 states and the District 

of Colombia between 1963 and 2007. Much of our data come from standard sources for U.S. 

macroeconomic data, and the details and sources are in the Appendix, which is available online.4 

Data for SGDP are for private industry only (millions of 2005 dollars). The same is true for the 

capital stock and labor. For the human capital stock, we use the average years of schooling in the 

labor force, the most commonly used measure of human capital in the literature (Frantzen, 2000; 
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Bronzini and Piselli, 2009; int. al.). Unlike our other variables, which are only for private 

industry, of necessity our measure of human capital includes the education of government 

workers. 

We use state level total R&D expenditure performed by private industry (converted to 

2005 dollars). We log-linearly impute some missing values. To construct the R&D capital stock 

variable, we follow the perpetual inventory method used throughout the literature. Following 

Coe and Helpman (1995) and Bronzini and Piselli (2009), we use a 5% depreciation rate for 

R&D.5 The final R&D capital stock variable is available for 83.1% of the possible 2,295 state-

years in the sample. To estimate the spillover effect of R&D across states we create three 

measures of R&D performed in other states. In our main specification RD_OTHER is spatially 

lagged average domestic R&D performed outside the states. In particular, R&D from other states 

is weighted inversely to the distance from state i, resulting in a stock denoted RD_OTHERD. 

Thus R&D from all other states contributes to spillovers, but the contributions from closer states 

are given more weight to reflect the common finding in much of the literature that knowledge 

spillovers are often localized (e.g., Audretsch and Feldman, 2004).  In the second formulation, 

RD_OTHERS, the R&D stock of each outside state is weighted by the economic similarity with 

state i, where heavier weight in the similarity index is put on R&D intensive industries. 

RD_OTHERS captures the idea that R&D spillovers are expected to be higher among states with 

more similar, R&D intensive economies. For example, if state j has a relatively large drugs and 

medicines sector, and that sector is also large in state i, then the contribution to RD_OTHERS
it of 

a dollar of R&D from state j will count more than that of a dollar of R&D from another state 

with a relatively non-technological economy.6 For another robustness check we create a third 
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version of the out-of-state average R&D stock, RD_OTHERC, using spatial weights defined by 

contiguity of state borders. 

Figure 1 depicts summary statistics for R&D intensity, which is the GDP share of current 

R&D expenditure, between 1963 and 2007 across states. The figure shows that there is more 

variation in the cross-section than the time series: while the median R&D intensity stays in a 

narrow band between 0.85% and 1.6% over time, the interquartile range across states ranges 

from 1.1 to 2.3 percentage points and some states have an R&D intensity in the range of 4 to 6% 

or higher.7  

In general, rural states spent the least on R&D.8 Alaska, South Dakota, Wyoming, and 

Mississippi all spent less than 0.5 percent of their GDP on R&D. Other states that contain 

important centers of advanced manufacturing and high technology spend more of their GDP on 

R&D. For instance, California (the home of Silicon Valley and much aerospace R&D during the 

period) and Washington (the home of Boeing, Microsoft, and many other high-technology firms) 

spent over twice as much as the average of 1.6% of GDP on R&D. Table 1 presents the summary 

statistics for all the variables discussed above. 

4. Methodology 

We derive our model and econometric approach following much of the recent empirical 

growth literature (e.g., Coe and Helpman, 1995; Bronzini and Piselli, 2009). A full description of 

the derivation of our theoretical and econometric models is available in the online Appendix.  

TFP is assumed to be determined by technical change and the stocks of human capital and R&D. 

Assuming a production function with Hicks-neutral TFP, our models for estimation are the 

following: 
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 𝑦𝑦𝑖𝑖𝑖𝑖 = (𝜆𝜆𝑖𝑖 + 𝜏𝜏𝑡𝑡) + 𝛾𝛾ℎ𝑐𝑐𝑖𝑖𝑖𝑖 + 𝛿𝛿𝛿𝛿𝛿𝛿𝑖𝑖𝑖𝑖 + 𝜋𝜋𝑅𝑅𝑅𝑅_𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑖𝑖𝑖𝑖 + 𝛼𝛼𝛼𝛼𝑖𝑖𝑖𝑖+𝛽𝛽𝛽𝛽𝑖𝑖𝑖𝑖 + 𝜀𝜀𝑖𝑖𝑖𝑖 (4.1) 

 𝑡𝑡𝑡𝑡𝑡𝑡𝑖𝑖𝑖𝑖 = (𝜆𝜆𝑖𝑖 + 𝜏𝜏𝑡𝑡) + 𝛾𝛾ℎ𝑐𝑐𝑖𝑖𝑖𝑖 + 𝛿𝛿𝛿𝛿𝛿𝛿𝑖𝑖𝑖𝑖 + 𝜋𝜋𝑅𝑅𝑅𝑅_𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑖𝑖𝑖𝑖 + 𝜂𝜂𝑖𝑖𝑖𝑖 (4.2) 

where the lower-case letters stand for natural logarithm, and 𝜀𝜀𝑖𝑖𝑖𝑖 and 𝜂𝜂𝑖𝑖𝑖𝑖 are error terms. Our 

dependent variables in Equations (4.1) and (4.2) are SGDP (y) and TFP (tfp), respectively. The 

independent variables are: human capital (hc), R&D (RD), R&D spillover (RD_OTHER), labor 

force (l) and physical capital stock (k). We follow Bronzini and Piselli (2009) and first estimate 

the spillover effect of R&D across states using RD_OTHER D, the weighted R&D stock from 

other states, constructed as described in section III. To account for the year effects 𝜏𝜏𝑡𝑡, we time-

demean all variables (without explicitly changing our notation) from here on.9 

We estimate the models in Equations (4.1) and (4.2) using our unbalanced panel with all 

available data between 1963 and 2007. The equations are in log levels instead of log changes in 

order to assess the long-run relationships in the data. The levels of output, TFP, and the R&D 

stock also have the advantage of being much less sensitive to measurement error than their 

growth rates, which can bias estimation (Griliches and Hausman, 1986). However, such trending 

time series are likely to be integrated, and so we use estimation techniques appropriate for 

cointegrated data. We estimate the parameters of the long-run relationships in Equations (4.1) 

and (4.2) using the Pooled Mean Group (PMG) estimator. Since our main results are based on 

the estimation of our model using the PMG, below we provide an econometric model 

incorporating short-run dynamics, long-run relationships, and heterogeneity across panels. 

The autoregressive distributed lag (ARDL) model we employ, expressed in error 

correction form, is: 

Δ𝑦𝑦𝑖𝑖𝑖𝑖 = 𝜙𝜙𝑖𝑖�𝑦𝑦𝑖𝑖,𝑡𝑡−1 − 𝜃𝜃′𝑥𝑥𝑖𝑖𝑖𝑖� + �𝜆𝜆𝑖𝑖𝑖𝑖∗ Δ𝑦𝑦𝑖𝑖,𝑡𝑡−𝑗𝑗

𝑝𝑝−1

𝑗𝑗=1

+ �𝛿𝛿𝑖𝑖𝑖𝑖∗ Δ𝑥𝑥𝑖𝑖,𝑡𝑡−𝑗𝑗

𝑞𝑞−1

𝑗𝑗=0

+ 𝛼𝛼𝑖𝑖 + 𝜀𝜀𝑖𝑖𝑖𝑖 (4.3) 
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where θ is the long run relationship of interest. The short run dynamics of the dependent variable 

are governed by the deviation from the long-run relationship. Parameter 𝜙𝜙𝑖𝑖, which governs the 

speed of adjustment to the long run relationship, varies across states and must be between zero 

and -2 for the existence of a long run relationship between the dependent variable and the control 

variables. Under the assumptions of Pesaran et al. (1999), we have 𝑦𝑦𝑖𝑖𝑖𝑖 = 𝜃𝜃′𝑥𝑥𝑖𝑖𝑖𝑖 + 𝜂𝜂𝑖𝑖𝑖𝑖, where for 

each i, ηit is stationary.10  

Given that our data fall into the “large N, large T” case, the Pooled Mean Group (PMG) 

estimator developed by Pesaran et al. (1999) is appropriate. With the PMG estimator, the long 

run effect of R&D on output or TFP is estimated with 𝜃𝜃�, the estimates for 𝜙𝜙𝑖𝑖 will recover the 

long-run dynamics, and the estimates for λ* and δ* will capture the short-run effects and 

dynamics.11 The PMG estimator allows us to obtain estimates that are consistent and 

asymptotically normal for stationary and non-stationary variables. The long run coefficients are 

assumed to be equal across states, but the intercept, short run coefficients and error variances 

differ across states. The lag order of the ARDL was selected using the Schwarz Bayesian 

Information criterion (SBIC).12  

The PMG estimator is a good choice for analysis of these data for two reasons. The PMG 

estimator offers a convenient middle ground between traditional fixed effects estimators for 

panel data, in which all coefficients are common across panels (pooling), and the Mean Group 

(MG) estimator, in which no coefficients are restricted to be in common. The MG estimator 

(Pesaran and Smith, 1995) allows all coefficients to vary by group and then averages the 

coefficients. Note that with the MG estimator there is essentially no advantage in having a panel, 

since estimation devolves into state-by-state estimations. PMG is an intermediate estimator 

because it produces pooled estimates for the long run relationship between variables while 
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allowing heterogeneity across groups in the short run relationships (Pesaran et al., 1991). We 

expect that the long run relationship between R&D, output, and TFP is largely similar across 

states due to the commonalities in institutions, economic development, and available 

infrastructure and technology within the United States. Recent work on the impacts of R&D that 

uses country level data assumes a common long run relationship among variables (e.g., Coe and 

Helpman, 1995; Coe et al., 2009). A fortiori, if the assumption of commonality in the long run 

relationships among R&D, growth, and TFP is justified across countries, then it is more 

justifiable for panels within a single country.13  

In addition, the results of Hausman tests indicate that PMG estimator is a suitable choice 

for our application. We conduct Hausman tests of the PMG and MG estimates to test the 

assumption of common long-run relationships. The Hausman test looks for evidence that null 

hypothesis H0: θi = θ for all i is invalidated by heterogeneity in the long run estimates from the 

MG estimation. PMG estimation is not rejected in favor of MG estimation for any of the 

specifications tested. 

The remaining question is why we do not use simple panel data estimators. There are 

several reasons. Most of the recent empirical work on the R&D-growth relationship uses 

cointegrating regressions (for example, Kao, Chiang, and Chen, 1999; Bronzini and Piselli, 2009; 

Coe et al., 2009; Ang and Madsen, 2013). Furthermore, we demonstrate that our variables are 

non-stationary. Using a traditional fixed effects panel estimator with differenced variables to 

solve the spurious regression problem would miss important information about the long run 

relationships in the data.14 Indeed, estimates from a fixed effects growth model using the 

difference of all variables reveal no impact of R&D on SGDP growth at all, a nonsensical result 

flying in the face of decades of literature on the importance of R&D for economic growth.15  
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We also explore—and decide against—estimating our model using the Dynamic 

Ordinary Least Squares (DOLS) estimator. We choose the PMG estimator for our main analysis 

because the assumptions necessary for consistency of the DOLS estimator are more restrictive 

than those for the PMG estimator. The explication of the DOLS estimator, results, and discussion 

are in the online Appendix. 

5. Results 

In this section, we present the empirical results from the estimates from the baseline 

estimations, as well as the results of additional regressions designed to check the validity and 

robustness of our conclusions. As a preliminary matter, PMG estimation requires that the 

variables be integrated of no more than order 1, and thaot a cointegrating relationship exist 

among the regressors and the dependent variable. The results of tests for nonstationarity, order of 

integration, and cointegration are in the online Appendix.16 When using the time demeaned 

variables, the various tests show that the assumptions necessary for PMG estimation cannot be 

rejected, except that there is mixed evidence for the nonstationarity of TFP. Hence, we focus 

here more on the results using SGDP than TFP as the dependent variable. 

Baseline Estimations  

The baseline PMG estimates are shown in Table 2, where results in Columns 1 and 2 

(long-run coefficients only) are from the model that includes the R&D stock in other states 

weighted by distance. Estimates in Table 2, Column 3 are based on the model that considers 

other states’ R&D stock weighted by economic similarity and R&D relevance, and estimates in 

Column 4 include an interaction of this variable with the other states’ R&D stock weighted by 

distance. We observe that in all estimations we meet the condition for the existence of a long run 
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relationship between the dependent and control variables: the average error correction term and 

its confidence interval are between zero and -2. Furthermore, the Hausman tests comparing the 

PMG and MG estimates for all specifications shown in Table 2 fail to reject the assumption of a 

common long-run relationship for all the states.17 

Column 1, in Table 2, shows the estimates for the baseline model that uses SGDP as 

dependent variable and R&D stock in other states weighted by distance. Looking at the long run 

coefficients, we find that all of the inputs contribute in a positive and statistically significant way 

to SGDP. The long run coefficients of labor and physical capital stock are 0.729 and 0.334, 

respectively. The sum of these two coefficients is 1.06, indicating that there are slightly 

increasing returns to scale to physical inputs.18 These estimates are also close to the conventional 

wisdom regarding labor and capital shares in the U.S. economy (2/3 and 1/3, respectively). 

Human capital is measured to have a large impact in the long run, with a coefficient of 1.257.  

The long run coefficient of the log R&D stock is 0.056 in the SGDP model. This 

elasticity falls within the range of results for R&D own-elasticity estimates from country-level 

panel data studies cited in Hall et al. (2010). Our result for the own-elasticity of R&D in the U.S. 

states is not far from Coe and Helpman’s (1995) elasticity for OECD countries of 0.097 and 

Bronzini and Piselli’s (2009) estimates in the range of 0.014 to 0.076 for Italian regions. To 

convert our elasticity to an estimate of the marginal returns to R&D performed within a state, we 

can multiply the elasticity by Y/RD. Using the SGDP-weighted average R&D to output ratio for 

each state and then calculating a SGDP-weighted average across states returns an estimated 

marginal return to R&D of 82%.19 For comparison, Coe and Helpman (1995) found that the 

returns to within-country R&D averaged 123% for G7 OECD countries and about 103% for the 

United States in particular.20 Given that their estimate of the returns to R&D includes interstate 
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spillovers and ours does not, it is natural that we find lower returns. Note that the marginal 

returns reported here are for the one-year impact based on the long run relationship in equation 

(4.4), in keeping with the practice in the literature.21 

Similarly, the impact of the R&D stock in other states, RD_OTHERD, is sizeable and 

statistically significant. The R&D spillover elasticity is 0.313. This figure is naturally much 

larger than the own-elasticity, since a 1% increase in the weighted average of other states’ R&D 

stocks represents a huge amount of additional R&D performed out-of-state. The marginal return 

to a one-dollar increase in RD_OTHERD (as would happen, for example, if each other state raised 

its R&D stock by one dollar) is 569%. Since the average weight of another state (including D.C.) 

in the calculation of RD_OTHERD is 1/50, we can say (roughly speaking) that a dollar spent on 

R&D in another single state j has a marginal return of about 11.4% (=569%/50) for state i.  

R&D spillovers among states can also be examined on a state by state basis. Table 3 

shows the own-state marginal returns to R&D, the returns spilled over to other states, 22 the 

spillover ratio (defined as the latter divided by the former) and the percentage of total marginal 

returns that are spilled over to other states. The average spillover ratio is 4.9, indicating that 

every dollar added to own-state GDP from increased R&D is accompanied by almost $5 of 

SGDP created elsewhere. The average spillover fraction is 77%. There is wide variation in the 

amount of social returns that the states keep within their own borders. In the Appendix we 

provide similar statistics individually for each state.  

The 255 short run state-specific coefficients are not reported in the table, but in the 

Appendix (Table A.6) we report the mean short-run coefficients. The mean short run coefficient 

for the R&D stock is insignificant. Thus, on average across states, own-R&D has no impact on 

SGDP in the short run after controlling for the long-run relationship. This is in accord with 
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results of the simple panel regression mentioned above (see note 15), where R&D was found to 

be unimportant after differencing the long run relationships out of the data. The result 

emphasizes that the mechanisms in the economy transforming R&D activity into economic 

growth are primarily long-run in nature, and perhaps exclusively so. We also find that the 

average short-run coefficient for other states’ R&D is insignificant at the 5% significance level. 

Since we observe no significant short-run impact of R&D after accounting the long-run 

relationships in the data, in the following discussion of results we focus solely on the long run 

coefficients (see Appendix, Table A.5, for short run coefficients).  

We also estimate the impact of R&D directly on TFP using the PMG estimator and 

equation (4.2).  The coefficients are shown in Column 2 of Table 2. All the long run coefficients 

in the model for TFP are statistically significant and the long-run elasticities are higher than 

those estimated in the baseline model for SGDP. The elasticity coefficient for the R&D stock of 

0.143 implies that the own-state marginal returns to R&D are 211% on average, which is high 

compared to most other estimates in the literature.23 The regressions for TFP require the 

assumption of constant returns to scale in labor and capital (see the Appendix). Since the 

baseline estimation for SGDP formally rejects this assumption, it may be that the elasticities 

from the TFP regression are biased.24 Recall further that the evidence for cointegration in this 

regression, discussed in the previous section, was weaker than for the other regressions. For all 

these reasons, and to err on the side of understating the returns to R&D, we therefore use SGDP 

instead of TFP as the dependent variable in the remainder of the paper. The spillovers calculated 

from the TFP regression are larger in amount but smaller relative to within-state returns. The 

elasticity for other-state R&D is 0.531, leading to a spillover ratio of 3.2 and a spillover fraction 

of 70% (using the same methodology as for the figures in row 1 of Table 3). 
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In Column 3 of Table 2, RD_OTHERS replaces RD_OTHERD in equation (4.1). When 

weighting R&D from other states by economic similarity and R&D relevance, the elasticity for 

the other-state R&D stock is more than twice the magnitude of the estimate in Column 1.  This 

reflects the greater impact of foreign R&D in the home state when accounting for whether R&D 

done elsewhere is performed in technologically proximate industries.25 The elasticity for own-

state R&D also rises, leading to an estimated 154% own-return on R&D and a spillover to other 

states of $4.47 for every dollar created for the home state (see the last row of Table 3). The log 

likelihood of the estimated model, however, is slightly lower than the main model in Column 1.  

In Column 4 of Table 2, both RD_OTHERD and RD_OTHERS are included and interacted 

in the regression specification. All the R&D-related coefficients are positive and highly 

significant. The positive coefficient on the interaction term RD_OTHERD×RD_OTHERS 

indicates that when R&D performed in other states is technologically and economically 

proximate to the home state, distance-weighted R&D performed elsewhere matters even more 

for the home states’ growth. Conversely, the interaction term also shows that when R&D 

performed in other states is geographically closer to the home state, R&D weighted by economic 

similarity and R&D relevance that is performed elsewhere increases the home states’ growth 

even more. 

If the contiguity-based definition of the other-state R&D stock, RD_OTHERC, is used, the 

results are qualitatively similar to the results in column 1 (results are in the Appendix, Table 

A.4)26 Own- and other-state R&D still have positive, highly statistically significant effects on 

SGDP. The largest quantitative difference is that the impact of own-R&D (𝛿𝛿 = 0.087) gains 

importance at the expense of other-state R&D (𝜋𝜋� = 0.044).27  
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Robustness Checking and Extensions 

In this section, we explore whether the long run effect of R&D on SGDP is robust to 

alternative specifications and extensions. For all these additional regressions, the dependent 

variable is SGDP and other-state R&D stock is distance weighted. We begin with estimating the 

model without including the spillover effect of R&D, to demonstrate that our finding of a large 

own-R&D elasticity does not depend on the spatial assumptions employed in our construction of 

the other-R&D stock. The results of the PMG estimation when RD_OTHER is omitted are in 

column 1 of Table 4. The estimated own-elasticity for R&D is larger (0.076 versus the estimate 

of 0.056 from the baseline estimation) when we do not include other states’ R&D stock. This 

finding is in accord with the literature, where it is emphasized that it is important to include the 

spillover effect when looking at the impact of R&D. Otherwise, given the generally positive 

correlation between domestic and foreign R&D stocks, the direct effect of R&D is 

overestimated.  

We also test for evidence of change in the R&D elasticities between the periods 1963-

1992 and 1993-2007. The R&D coefficients may differ in the later period for two reasons. There 

may have been structural shifts in the economy that changed the returns to R&D or the 

magnitude of R&D spillovers. For example, information and communications technology (ICT), 

which greatly affected the nature of R&D as well as production (Howells, 1995), had a rising 

contribution to U.S. economic growth during the period of our study (Jorgenson, 2001). 

Furthermore, our R&D data are available more consistently in the later period, and there may 

therefore be a composition effect. For the latter reason, testing whether the R&D coefficients 

changed also serves as a test for bias in the estimates due to missing data in the earlier period.  
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To test for change in the R&D elasticities, we interact the R&D variables with an 

indicator variable for the period 1993-2007. These estimates are shown in column 2 of Table 4. 

The results indicate that the own-R&D elasticity increased in the later period, but only by a small 

amount. The elasticity from the long run coefficient is 0.050 in the early period and increases by 

a statistically significant 0.008 in the later period. The own-R&D elasticity during 1993-2007 is 

thus very close to the estimate from the entire sample in column 4 of Table 2. There is no 

evidence that the elasticity from out-of-state R&D changed over time. Taken altogether, these 

results indicate that any bias due to missing R&D data in earlier years is small at most.  

We also estimate a specification in which the lagged R&D stocks, 𝑅𝑅𝑅𝑅𝑖𝑖𝑖𝑖−1 and 

𝑅𝑅𝑅𝑅_𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑖𝑖𝑖𝑖−1𝐷𝐷 , replace the current-period R&D stocks in equation (4.1). By using 

contemporaneous R&D in the previous estimations, we have followed the bulk of the recent 

literature. However, given that it takes time for R&D to result in innovations (Mansfield et al., 

1971; Ravenscraft and Scherer, 1982), we may expect the impact of lagged R&D to be higher 

than that of contemporaneous R&D. The results are in column 3 of Table 4. The own-R&D 

elasticity of 0.074 is indeed higher than in the baseline estimation, but the other-R&D elasticity 

of 0.217 is lower. 28 However, given the wide confidence intervals for the other-R&D elasticities, 

we cannot conclude that other-R&D elasticity is actually lower when lagging RD_OTHERD.29  

The final estimation in Table 4 addresses a technical issue regarding autocorrelation. The 

assumptions for the PMG estimator require that the error term in equation (4.3) be white noise. 

Testing of the residuals from the estimation in Column 1 of Table 2 indicate that there may be 

autocorrelation in two states.30 Re-estimating with the lag lengths in the ARDL for those two 

states increased by one yields residuals for which we accept the null hypothesis of white noise. 

The estimates are substantially similar to the main results from Column 1 of Table 2, although 
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the other-state R&D elasticity is somewhat smaller at 0.225 (leading to an average spillover ratio 

of 3.2; see final row of Table 3). 

The PMG estimations above restrict the long run coefficients to be the same across states. 

We now explore whether the direct and spillover effect of R&D in the long run varies across 

states with different levels of human capital and output per worker. Having better educated 

workers leads to greater assimilation of the new knowledge created through R&D. Given that the 

literature has found evidence of such complementarity between R&D and the skill level of 

workers (Hall et al., 2010), it is expected that the benefits of R&D are likely to be greater for 

those states with higher levels of human capital. In relation to the level of output per worker, we 

expect that states with higher levels of economic output will have a more advanced infrastructure 

and an environment that would allow R&D to have a greater impact on growth and productivity.  

We categorize states based on their time-averaged levels of human capital and SGDP per 

worker into three groups: low, medium, and high. A full set of dummy variables for the groups 

are interacted with regressors RD and RD_OTHERD in these estimations. The long-run estimates 

from these models are shown in Table 5, with the estimates for states differentiated by levels of 

human capital in column 1. The results show that R&D has positive effects on SGDP for all 

groups of states, and the impacts are higher when there is more human capital in the state. Both 

the own-R&D and other-R&D elasticities rise with the level of human capital, and a joint Wald 

test confirms that there are statistically significant differences among the coefficients.  However, 

the other-R&D coefficient is insignificant for the lowest human-capital group of states, perhaps 

indicating that some threshold level of human capital is required in order to reap the benefits of 

R&D spending from other states. The idea of the necessity of improving domestic human capital 

through technical education in order to appropriate the benefits of foreign technology is at least 
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as old Friedrich List’s writings on national systems of innovation in the mid nineteenth century 

(Freeman and Soete, Ch. 12, 1997). 

When investigating whether the effect of R&D differs across levels of GDP per worker 

(Column 2 of Table 5), we find a similar story for own-R&D elasticity but the opposite for the 

other-R&D coefficients. Again, a joint Wald test confirms that there are statistically significant 

differences in the R&D elasticities among the groups. The elasticities for the own-R&D stock 

increase with GDP per worker, but are only significant for those states with medium and high 

levels of output. Three interpretations of these results are possible. It may be that a state needs to 

have a certain level of development to benefit from the state spending on R&D. The states in the 

lowest output group, which evinces no significant effect of own-R&D, are rural, mostly small 

states. Such states may not have the human capital or R&D intensive industries that benefit from 

performing R&D. It may also be the case that states in the lowest output group do not perform 

enough R&D to affect SGDP measurably. The real R&D stock for the low- output group 

averages less than a third as much as for the middle group, and less than one-tenth as much as for 

the highest output group.31 Finally, it may be the case that the states in the lowest output group 

do not have many multistate R&D performing firms, and that such firms are a significant 

transmission mechanism for R&D spillovers across state lines. We return to the implications of 

this latter point in the concluding section. 

On the other hand, the results in Column 2 of Table 5 show that states in all groups 

benefit from spillovers. Here the elasticities are largest for those states with the lowest SGDP per 

worker and vice versa. The sensitivity of SGDP to out-of-state R&D in states with low levels of 

output per worker may be high because these states both do the least in-state R&D and have the 

least impact to show for it. Such states rely heavily on the knowledge created by other states.  
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6. Conclusion 

Our investigation of the relationship between investment in R&D capital and productivity 

allows us to draw the following conclusions. First, all specifications estimated show that R&D 

performed within a state has a positive, significant effect on SGDP through TFP in the long run. 

The finding is robust to the inclusion or exclusion of other-state R&D, to the latter variable’s 

definition, to allowing the elasticity to change over time, and to the lag lengths chosen for R&D 

and for the ARDL. The estimated contemporaneous marginal return within the state to R&D 

investment is 82% in our baseline estimation and even higher in alternative specifications. The 

accumulated returns over ensuing years are many times larger in present value. Thus, our study 

demonstrates—apparently for the first time—that the positive linkages from R&D to 

productivity growth found in the literature at the firm, industry, and national levels also apply to 

the U.S. state level.  

The magnitude of the effect of R&D on growth we find for the United States is in within 

the range of estimates found from cross-country samples, smaller than Coe and Helpman (1995) 

found for OECD countries, but larger than what Bronzini and Piselli (2009) found for Italy. 

Differences in the estimated effect of R&D are likely due to differences between countries in the 

way in which R&D translates into economic activity. These differences may derive from 

differences in institutions or firm characteristics; firm-level exploration of the R&D drivers of 

national growth is a promising area of future study. 

Second, we find that R&D does not seem to have significant short-run impacts on 

productivity, whether the R&D is performed within the state or in other states. This highlights 

the long run nature of the link between R&D investment and growth in a state’s economy.  
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Third, we find strong evidence of positive R&D spillovers among U.S. states. Our 

baseline results indicate that for every dollar R&D investment adds to own-state GDP, an 

average of nearly $5 of GDP is created in other states. This estimate varies between $3.25 and 

$6.06 in alternative specifications. Considering the R&D spillovers another way, we also find 

that a dollar spent on R&D in one state has a marginal return of about 11% in another state on 

average. 

Fourth, we find some variation in the R&D elasticities across the sample. The evidence 

indicates that the own-elasticity of R&D increased, albeit only slightly, between the periods 

1963-1992 and 1993-2007. Furthermore, the levels of human capital and development are 

relevant when looking at the impact of R&D. The more human capital a state has, the higher are 

the own- and other-R&D elasticities. At the lowest levels of human capital in a state, there is no 

measurable impact from R&D performed in other states at all. Similarly, when output per worker 

is low there is no impact of in-state R&D activity on productivity. Economic output in such 

states is also the most sensitive to the R&D stocks of other states. 

Our findings have implications for public policy. Many authors have long argued that the 

difficulties in appropriating the fruits of knowledge production gives the government a role in 

promoting R&D to improve social welfare (Nelson, 1959; Arrow, 1962). We have shown that 

the lion’s share of the benefits of R&D activities for output and productivity leak across state 

lines. Therefore, basic considerations of political economy imply that state governments have 

deficient incentives to promote investment in R&D. To the extent that intervention is desired and 

that effective policy can be found to promote private R&D (Hall and Van Reenen, 2000), it thus 

appears that multistate cooperative or federal efforts are warranted.32 Cooperative efforts are also 

desirable since Wilson (2009) finds that state R&D tax credits mainly draw R&D activity from 
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surrounding states, so that states play a nearly zero-sum game. Furthermore, our analysis 

provides evidence for synergy between human capital and the impacts of own-R&D and R&D 

“spill-ins” from other states. This highlights the continuing need for states to seek to improve 

opportunities and attainment in education, particularly in the science, technology, engineering, 

and mathematics (STEM) areas that are necessary for R&D. 

For further research, as more statistics become available on R&D funding by sub-national 

public sources, it would be interesting to explore whether privately funded R&D has different 

productivity effects than publicly funded R&D. Determining whether there is a difference in the 

returns to R&D in the private sector with respect to R&D spending in the public sector would 

provide important implications for Science and Technology policy. Another fruitful avenue of 

inquiry may be to complement the aggregate data we examine with a study of firm-level data, to 

identify how much of the interstate spillovers are privately captured within firms. Such 

knowledge would help assess the strength of the rationale for state and regional R&D policy 

intervention based on deficient private incentives.  
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Endnotes

1 Data source: World Bank’s WDI, http://data.worldbank.org/data-catalog/world-development-

indicators.  

2 The coefficient on R&D intensity is -0.113 (0.073). The data for the regression are described 

below. 

3 Instead of citing the dozens of studies on the impact of R&D at the firm and industry levels, we 

refer the reader to the excellent reviews of Wieser (2005) and Hall et al. (2010). 

4 See Blanco et al. (2015) for an online appendix available online at: 

http://digitalcommons.pepperdine.edu/sppworkingpapers/56/ and 

http://papers.ssrn.com/sol3/papers.cfm?abstract_id=2607818. Refer to online Appendix for 

references to data sources. 

5 Hall et al. (2010) report that the empirical literature typically finds that estimates of the effects 

of R&D are insensitive to different depreciation rates in constructing the R&D stock.  

6 At the heart of the construction of RD_OTHERS is the index 𝑆𝑆𝑖𝑖𝑖𝑖𝐺𝐺𝐺𝐺𝐺𝐺 for the similarity of the 

economies of states i and j: 𝑆𝑆𝑖𝑖𝑖𝑖𝐺𝐺𝐺𝐺𝐺𝐺 = ∑ 𝑆𝑆𝑘𝑘𝑅𝑅𝑅𝑅 min�𝑠𝑠𝑘𝑘𝑖𝑖 , 𝑠𝑠𝑘𝑘
𝑗𝑗�𝑘𝑘 , where 𝑆𝑆𝑘𝑘𝑅𝑅𝑅𝑅 is the share of industrial 

sector k in national R&D, 𝑠𝑠𝑘𝑘𝑖𝑖  is the share of state i’s economy in sector k, and year subscripts are 

suppressed in the notation. 𝑆𝑆𝑖𝑖𝑖𝑖𝐺𝐺𝐺𝐺𝐺𝐺 is larger the closer are the shares in the two states’ economies of 

the different sectors, where similarity in R&D intensive sectors is upweighted. This measure is 

similar in spirit (but not detail) to the measure of similarity in R&D diversification of Scott and 

Pascoe (1987).  See the online Appendix for complete details.  

7 The notable outlier on the high side is Michigan in 1993, which had an R&D to GDP ratio of 

0.095. 

8 See Table A.1 in the Appendix for R&D intensity by state. 

                                                 

http://data.worldbank.org/data-catalog/world-development-indicators
http://data.worldbank.org/data-catalog/world-development-indicators
http://digitalcommons.pepperdine.edu/sppworkingpapers/56/
http://papers.ssrn.com/sol3/papers.cfm?abstract_id=2607818
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9 We do not include the stock of public infrastructure in the production function, as Bronzini and 

Piselli (2009) do. In the case of the United States, we expect public infrastructure to be relatively 

homogenous across states, and we do not find it necessary to include this variable in our 

estimation of the model. 

10 Recall that we time-demean all variables to account for trends not otherwise explained by the 

model, which further ensures the stationarity of ηit. 

11 For more detailed description of the structure of the PMG model, refer to Pesaran et al. (1999) 

and Blackburne and Frank (2007).  

12 We performed the lag test for each state in the sample and select the lag length that is 

appropriate in most states (we use the modal lag as selected according to the SBIC: p = q = 1). In 

our main estimations we thus impose a common lag length to all panels. If the lag length is too 

short for the actual stochastic process at work in some panels, there will be autocorrelation in the 

residuals for those panels. We test this in the robustness section below. Imposition of a common 

lag length is common in the empirical literature using the PMG technique.  

13 Furthermore, pooling when estimating the long run relationships among variables in our 

analysis allow us to reduce the problem of missing data in the R&D variables for some states in 

some years. 

14 Engle and Granger (1991, p.54) argue that “by analyzing only the differences of econometric 

time series, all information about potential (long-run) relationships between the levels of 

economic variables is lost.” 

15 Estimates from this alternative regression are not included in paper, but are available upon 

request. 

16 See Tables A.2 and A.3 in the online Appendix. 
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17 The p-values for the test of the consistency of the PMG estimates versus the MG estimates 

(not shown) are 0.69, 0.89, 0.12, and 0.82 for the estimations shown in Columns 1, 2, 3, and 4 of 

Table 2, respectively.  

18 The confidence interval for the sum is [1.04,1.09], which rejects constant returns to scale in 

favor of increasing returns to scale. We return to this point in our discussion of the models with 

TFP as the dependent variable. 

19 The formula we use for the marginal impact of own R&D is 𝛿𝛿 ∑ 𝑎𝑎𝑖𝑖𝑟𝑟𝑖𝑖𝑖𝑖 , where δ is the own-

elasticity for R&D, 𝑎𝑎𝑖𝑖 = 𝑌𝑌�𝑖𝑖/∑ 𝑌𝑌�𝑗𝑗𝑗𝑗  is the cross-state GDP weight, 𝑟𝑟𝑖𝑖 = ∑ 𝑏𝑏𝑖𝑖𝑖𝑖𝑌𝑌𝑖𝑖𝑖𝑖/𝑅𝑅𝐷𝐷𝑖𝑖𝑖𝑖𝑡𝑡  is the 

average output to R&D ratio in the state, and 𝑏𝑏𝑖𝑖𝑖𝑖 = 𝑌𝑌𝑖𝑖𝑖𝑖/∑ 𝑌𝑌𝑖𝑖𝑖𝑖𝑠𝑠  is the within-state GDP weight. 

20 Although Coe and Helpman (1995) do not report a figure specifically for the US, we find the 

latter figure by multiplying their reported GDP/RD ratio of 4.39 by their estimated elasticity for 

the US of 0.2339 (=1.027).  

21 Since increasing the stock of R&D in one year also increases available R&D capital in future 

years, the accumulated marginal impact of R&D expenditure is much greater. With R&D 

depreciation of 5% and discounting future GDP at 10% per annum, for example, the accumulated 

marginal returns in present value are greater than the single-year returns by a factor of 7.3. 

Increasing the R&D stock by $1 in year t leads to stocks increased by $(1-δ) in year t+1, $(1-δ)2 

in year t+2, and so on. Therefore if the estimated one-time marginal return to R&D expenditure 

is m and the discount rate is ρ, the present value of accumulated marginal returns is 𝑀𝑀 =

𝑚𝑚∑ [(1 − 𝛿𝛿)/(1 + 𝜌𝜌)]𝑠𝑠−𝑡𝑡∞
𝑠𝑠=𝑡𝑡 = 𝑚𝑚(1 + 𝜌𝜌)/(𝛿𝛿 + 𝜌𝜌). With ρ=10% and δ=5%, M = 7.33. This 

scaling factor can be applied to all the reported marginal returns in the paper. 

22 The formula for the marginal impact of R&D in state i on output in other states is 𝜋𝜋∑ 𝑤𝑤𝑗𝑗𝑗𝑗𝑠𝑠𝑗𝑗𝑗𝑗≠𝑖𝑖 , 

where π is the elasticity of output with respect to the out-of-state R&D stock, 𝑤𝑤𝑗𝑗𝑗𝑗 is the spatial 

weight from the definition of RD_OTHERD, 𝑠𝑠𝑗𝑗 = ∑ 𝑏𝑏𝑗𝑗𝑗𝑗𝑌𝑌𝑗𝑗𝑗𝑗/𝑅𝑅𝑅𝑅_𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑗𝑗𝑗𝑗𝐷𝐷𝑡𝑡  is the average output 

to out-of-state R&D ratio in the state, and 𝑏𝑏𝑗𝑗𝑗𝑗 is as defined in note 19. 
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23 See Table 5 in Hall et al. (2010). 

24 Apart from the assumption of constant returns, there is another difference between the SGDP 

and TFP regressions. The regressions of SGDP assume that the long-run coefficients on labor 

and capital are identical across states. The calculations involved in creating the TFP variable 

instead use state-specific labor and capital shares. Therefore while the TFP regression relies on a 

restrictive assumption of constant returns, it allows more flexibility than the SGDP regressions 

regarding the shares. Thus we would not necessarily expect the estimates from the SGDP and 

TFP regressions to be the same. Furthermore, neither assumed data generating process nests the 

other, preventing simple specification testing. 

25 When RD_OTHERD rises by one unit, some of the R&D performed elsewhere may be largely 

irrelevant to the home state because it was performed in industries that make up a small part of 

the home state’s economy or for which R&D is not very important. RD_OTHERS as used here 

accounts for both of those factors, and thus the apparent importance of R&D performed 

elsewhere rises.  

26 These results are calculated at the request of a referee. 

27 This is not surprising, given that spatial weighting based on contiguity ignores the presence of 

most R&D done elsewhere in the nation. 

28 If the lag length is increased to two and three years, the own-R&D elasticity remains higher 

than in the baseline estimation using contemporaneous R&D (the elasticities are 0.062 and 0.070, 

respectively). The other-R&D elasticities show more sensitivity to lag length, with elasticities of 

0.318 (two-year lag) and 0.247 (three-year lag). However, the log likelihood from these 

estimations is lower than that reported in column 3 of Table 4. 

29 The substantial overlap of the confidence intervals for the coefficients on other-R&D from the 

estimations using current R&D [0.23,0.39] and lagged R&D [0.14,0.28] suggests that the 

hypothesis test for equality of coefficients would not have a low p-value.  
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30 A variety of tests for autocorrelation were employed; see the Appendix for details. 

31 The R&D stock averages $4,618 million for the low GDP-per-worker group, $15,497 million 

for the middle group, and $48,043 million for the highest group. 

32 Demsetz (1969), however, contends forcefully that the existence of positive externalities in 

R&D do not necessarily indicate that government should intervene in the market, because actual 

governmental intervention is also imperfect.  A careful comparative institutions approach and 

analysis of specific policies is necessary before concluding that the market underperforms 

relative to realistic alternatives. 

 



Tables 
Table 1. Summary statistics for the estimation sample 

 
 

  Mean Std. Dev. Min Max 
Value in Levels 

    

SGDP 142,577 177,706 4,512 1,570,402 
TFP 0.15 0.04 0.07 0.53 
Physical capital  172,815 216,764 6,370 1,730,723 
Labor force, persons 2,397,588 2,486,807 119,608 18,200,000 
Human capital, years 12.34 1.22 8.88 15.04 
R&D Stock 21,586 42,089 6.56 538,478 
Other States’ R&D Stock, RD_OTHERD 

(wgtd by distance) 21,478 11,554 5,598 85,625 

Other States’ R&D Stock, RD_OTHERS 
(wgtd by economic similarity & R&D 
relevance) 

23,740 11,543 7,225 58,044 

Other States’ R&D Stock, RD_OTHERC 
(wgtd by contiguity) 20,743 22,330 1 163,385 

     

Values in Logarithms  
    

ln(SGDP) 11.33 1.05 8.41 14.27 
ln(TFP) -1.93 0.24 -2.67 -0.64 
ln(Physical capital) 11.53 1.02 8.76 14.36 
ln(Labor force) 14.25 0.97 11.69 16.72 
ln(Human capital) 2.51 0.10 2.18 2.71 
ln(R&D Stock, δ = 5%) 8.68 1.92 1.88 13.20 
ln(Other States’ R&D Stock), RD_OTHERD 9.84 0.53 8.63 11.36 
ln(Other States’ R&D Stock), RD_OTHERS 9.96 0.49 8.89 10.97 
ln(Other States’ R&D Stock), RD_OTHERC 9.24 1.77 0 12.00 

Notes: All dollar values are millions 2005$.  Summary statistics for annual observations for the period 
1963-2007 for 50 states and the District of Columbia. Statistics are based on the sample of state-years for 
which R&D data are not missing after imputation (1,907 observations). 

 

 



Table 2. Baseline PMG estimation results 

Dependent Variable: SGDP TFP SGDP SGDP 
  (1) (2) (3) (4) 
Long run coefficients     
R&D Stock 0.056*** 0.143*** 0.105*** 0.077*** 

(0.005) (0.012) (0.007) (0.006) 
Other States’ R&D Stock (RD_OTHERD, 

weighted by distance) 
0.313*** 0.531***  0.271*** 

(0.039) (0.080)  (0.044) 
Other States’ R&D Stock (RD_OTHERS, 

weighted by economic similarity and 
R&D relevance) 

  0.688*** 0.453*** 
  (0.084) (0.076) 

Interaction term 
(RD_OTHERD×RD_OTHERS)  

   1.723*** 
   (0.416) 

Years of Schooling 1.257*** 2.811*** 0.515*** 0.670*** 
(0.124) (0.121) (0.128) (0.130) 

Physical Capital Stock 0.334***  0.338*** 0.365*** 
(0.039)  (0.029) (0.035) 

Labor Force 0.729***  0.676*** 0.635*** 
(0.039)  (0.029) (0.036) 

Error Correction (ϕi), averaged across 
states 

-0.181*** -0.107***  -0.168*** -0.179*** 
(0.025) (0.017) (0.031) (0.033) 

No. Obs. 1,842 1,842 1,842 1,842 
Log Likelihood 5,021.1 4,169.3 5,020.2 5,143.2 

Figures are the long-run coefficients and standard errors (in parentheses) from pooled mean-group (PGM) estimation. Figures shown for the error correction 
term are for the average of the state-specific estimates of 𝜙𝜙𝑖𝑖. The short run coefficients are omitted in the table. Estimations include observations for 44 years 
during the period 1963-2007, from all 50 states and DC, with some missing observations. Estimations include a minimum of 12 observations per state and a 
maximum of 44, with an average number of observations per state of 36. All estimations include state-specific short-run dynamics, error variances, and fixed 
effects, and also account for year fixed effects through time-demeaning all variables. 
*** denotes significance at the 1% level.   
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Table 3: Average marginal returns to R&D investment, within state and spillovers 

Estimation used Within-State 
Marginal Return 

Marginal Return 
Spillovers 

Spillover  
Ratio 

Spillover 
Fraction 

Table Column Description A B B/A B/[A + B] 

2 (1) Distance weighted other-state R&D 
stock (RD_OTHERD; Y = SGDP) 0.823 1.992 4.902 0.767 

2 (2) Distance weighted other-state R&D 
stock (RD_OTHERD; Y = TFP) 2.106 3.376 3.245 0.696 

2 (3) 
Economic-similarity weighted other-
state R&D stock (RD_OTHERS;       
Y = SGDP) 

1.539 4.367 6.058 0.795 

4 (4) 
Additional lags for two states in the 
ARDL specification (RD_OTHERD; 
Y = SGDP) 

0.882 1.429 3.278 0.698 

Notes: Marginal returns in columns A and B are calculated as weighted averages: figures are calculated first at the state and year level and then are averaged 
across years (weighted by SGDP in the state across years) and states (weighted by time-averaged SGDP across states). Figures in columns A and B are expressed 
as the one-time marginal returns to a $1 increase in the own-state R&D stock. Estimates are based on the estimated elasticities from the PMG estimations from 
the given tables and columns. Figures in the last two columns are calculated at the state level using the formula in the column heading, and then are averaged 
across states (weighted by time-averaged SGDP across states). 
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Table 4. Additional PMG estimation results 

Dependent Variable: Without other-
state R&D 

Period-specific 
R&D Elasticity 

Lagged  
R&D Additional Lags 

  (1) (2) (3) (4) 
Long run coefficients     
R&D Stock 0.076*** 0.050***  0.060*** 

(0.006) (0.005)  (0.005) 
R&D Stock, later period  0.008***   

 (0.002)   
R&D Stock, lagged   0.074***  

  (0.006)  
Other States’ R&D Stock (RD_OTHERD)  0.215***  0.225*** 

 (0.035)  (0.039) 
Other States’ R&D Stock, later period  0.010   

 (0.031)   
Other States’ R&D Stock, lagged   0.217***  

  (0.036)  
Years of Schooling 1.407 1.338*** 1.226*** 1.470*** 

(0.139)*** (0.112) (0.129) (0.132) 
Physical Capital Stock 0.436 0.347*** 0.508*** 0.392*** 

(0.029)*** (0.036) (0.028) (0.037) 
Labor Force 0.657 0.755*** 0.532*** 0.666*** 

(0.028)*** (0.037) (0.030) (0.038) 
Error Correction (ϕi), averaged across 

states 
-0.182 -0.204*** -0.189*** -0.181*** 
(0.031)*** (0.026) (0.037) (0.027) 

No. Obs. 1,842 1,842 1,791 1,840 
Log Likelihood 4,958.9 5,087.4 4,935.6 5,032.6 
*** denotes significance at 1% level.  

See notes to Table 2. In Column 4, lag lengths in the ARDL are p = q = 2 for Arkansas and Utah and remain at p = q = 1 for other states (as in all other estimations). 
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Table 5. Additional PMG estimation results: Heterogeneous R&D elasticities 

Groups based on: Levels of Human 
Capital 

Levels of 
GDP/worker 

Y = SGDP (1) (2) 
R&D Stock, Low Group  0.058*** 0.003 

(0.014) (0.007) 
R&D Stock, Medium Group  0.064*** 0.084*** 

(0.006) (0.010) 
R&D Stock, High Group 0.086*** 0.088*** 

(0.011) (0.009) 
Other States R&D Stock (RD_OTHERD), 

Low Group 
0.081 0.308*** 

(0.081) (0.098) 
Other States R&D Stock (RD_OTHERD), 

Medium Group 
0.160*** 0.297*** 

(0.040) (0.082) 
Other States R&D Stock (RD_OTHERD), 

High Group 
0.596*** 0.117** 

(0.088) (0.055) 
Years of Schooling 1.579*** 1.208*** 

(0.134) (0.133) 
Physical Capital Stock 0.425*** 0.109* 

(0.032) (0.048) 
Labor Force 0.645*** 0.992*** 

(0.033) (0.051) 
Error Correction (ϕ)  -0.176*** -0.192*** 

(0.028) (0.028) 
Short run coefficients omitted in table   
No. States 51 51 
No. Obs. 1,842 1,842 
Log Likelihood 5,030.1 5,035.5 
***, **, and * denotes significance at 1%, 5%, and 10% level, respectively.  

Figures are the long-run coefficients and standard errors (in parentheses) from pooled mean-group estimation. The 
high, medium, and low groups refer to group-specific coefficients for the three levels of human capital (column 1) 
and GDP/worker (column 2). See also notes to previous estimation tables. 
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Figures 
 

Figure 1. Industrial R&D as a fraction of GDP in U.S. states, 1963-2007 

  

Notes: figures include R&D performed by industry. Nominal data are used for R&D expenditure 

and state GDP. Authors’ calculations; using NSF data as described in text. 
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