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An Econometric Analysis of the Effect of Wildfire-Produced Particulate Matter 

on Solar Energy Production in California 

 

I. Introduction 

 

On September 18, 2018, the California State Senate passed Senate Bill 100, known as the 

100 Percent Clean Energy Act of 2018.  This act formally set the goal for “one hundred percent 

of total retail sales of electricity in California to come from eligible renewable energy resources 

and zero-carbon resources” by December 31, 2045. 1  This goal requires California to 

progressively increase its dependence on clean energy sources throughout the coming two 

decades, with the most recent benchmark of achieving 33% dependence on clean energy sources 

by 2020. The upcoming deadline that the state faces is December 31, 2024. By then, California 

should be 40% dependent on clean energies. As of 2020, the state was ahead of schedule, 

achieving 59% dependence on clean sources at year’s end: 10.6% nuclear, 13.9% large hydro, 

and 34.5% renewables.2 

The year 2020 was a record-shattering year for wildfires in California, during which over 

4.3 million acres burned.  2018 was also a devastating year: nearly 2 million acres were burned 

by wildfire. 2019, while flanked by two years in which wildfires ravaged the state, only had 

about 250,000 acres burn.3  This time span, although short, is representative of the effects of 

particulate matter on solar energy.  An analysis of the effect of wildfire-produced particulate 

matter on solar energy production is highly relevant to California’s efforts to achieve the goals 

set by the State Senate in the 100 Percent Clean Energy Act of 2018. 

Throughout this paper, the term “clean energy” is used to refer to all non-fossil fuel 

energy sources. “Renewable energy,” a subgroup of clean energy, refers specifically to wind and 

solar energies.  Particulate matter, defined as microscopic solid carbon particles released into the 

atmosphere from wildfires, is included in the air quality measurement PM2.5, or particulate 

matter that is 2.5 micrometers in diameter or smaller.  PM2.5 contributes to air pollution and 

decreases solar irradiation, which is the power per unit area of energy received from the sun.   

 

I.A        Policy Issue 

 

While the progress that the state has made so far towards becoming 100% reliant on clean 

energies is commendable, California faces a dilemma that could obstruct it from achieving 100% 

dependence on clean energy within the next twenty-two years. Wildfire activity in the western 

United States has increased rapidly over the last two decades.4  Abatzoglou, Battisti, and 

Williams state that “absent a massive intervention to modify the intensity and mitigate negative 

impacts, the western US forest-fire area will continue to increase in the coming decades.”5 

Appendix A shows the clear increasing trend of wildfires in the western United States. It is 

hypothesized that due to the increasing number and intensity of wildfires, and resultingly the 

 
1 California, State Legislature, Senate. 100 Percent Clean Energy Act of 2018. 
2 “New Data Indicates California Remains Ahead of Clean Electricity Goals.” 
3 California Department of Forestry and Fire Protection (CAL FIRE). “Incidents Overview.” 
4 Westerling, A.T. “Increasing Western US Forest Wildfire Activity: Sensitivity to Changes in  

the Timing of Spring.” 
5 Abatzoglou, J.T., Battisti, D.S., Williams, A.P. et al. “Projected Increases in Western US Forest  

Fire Despite Growing Fuel Constraints.” 



 

increased particulate matter in the atmosphere and decreased solar irradiation, solar energy in 

California will struggle to contribute to the 100 Percent Clean Energy Act’s goal of Californian 

dependence on 100% clean energy by 2045. 

 

      I.B        Existing Literature 

 

Dumka et al. performed an advanced study testing a similar hypothesis focusing on the 

Indian subcontinent.6 Due to India’s rapidly increasing population, urbanization, and 

industrialization, energy demand on the Indian subcontinent has increased significantly. Solar 

energy is a fast-growing resource in India, but wildfires over the central Himalayan region could 

obstruct solar energy’s contribution to providing energy to satisfy the growing demand. The 

results of Dumka et al. indicate that smoke and other aerosols weaken solar rays’ penetration of 

the atmosphere, leading to a decrease in the energy production of solar plants.7 

The Northwest Power and Conservation Council’s initial analysis of the 100 Percent 

Clean Energy Act of 2018 concludes that “massive amounts of…solar resources [make] the 

management of the power grid more complex and will likely require significantly more resources 

to be built for reliability.”8 The variability in renewable resource production causes availability 

of these energies to be “extremely volatile.”  Ultimately, both Dumka et al. and the Northwest 

Power and Conservation Council conclude that renewable energies, particularly solar energy, is 

unreliable due to its sensitivity to uncontrollable forces, such as weather conditions. 

 

II. Description of the Data 

 

The data used in this analysis come from a variety of sources. The names, locations, and 

megawatt hour production of solar plants were found on the U.S. Energy Information  

Administration website. The names and locations of California counties were found on the 

California state government’s website. Weather data, such as average temperature and  

precipitation per county, were found at the National Center for Environmental Information: 

National Oceanic and Atmospheric Administration website. Data regarding the particulate matter 

in Californian counties was found on the United States Environmental Protection Agency 

website.  Information about the number and size of wildfires in California was found on the 

California Department of Forestry and Fire Protection website. The UV index per month, per 

county was found at www.weather-us.com. 

 

      II.A       Descriptive Statistics 

 

The following is an explanation of the variables used in this analysis.  A table with 

descriptive statistics of each variable is shown below. 

 

solarfarmid: The numerical distinction between solar farms, ranging 1 to 25.  solarfarmid is 

used as the panel variable in the fixed effects regression models. 

 
6 Dumka, Umesh Chandra, et al. “Can Forest Fires Be an Important Factor in the Reduction in  

Solar Power Production in India?” 
7 Ibid. 
8 California's 100 Percent Clean Energy Act, Part 2. 

 

http://www.weather-us.com/


 

 

yearmonth: The time period associated with each datum, formatted as year followed by month 

(ex: 201801 for January 2018). The data span January 2018 to December 2020 (201801 to 

202012). yearmonth is used as the time variable in the fixed effects regression models. 
 

logmegawatthours: The natural log of the total megawatt hours of solar energy produced by 

solar farm (i) during time period (t). Because the variable megawatthours is skewed, 

logmegawatthours = ln(megawatthours). Appendix B shows the Kernel density plot of 

megawatthours. There are some instances in which megawatthours equals 0; in such cases, 

logmegawatthours is set to ln(4.08) = 1.407. ln(4.08) was chosen as the value for such cases 

because the lowest naturally occurring value of megawatthours is 8.165; the solution to such 

log(0) instances is to halve the lowest naturally occurring value and take the natural log of that 

number. 

 

logacres: The natural log of the total acres burned by wildfires that started in county i during 

time period t.  Because the variable acres is skewed, logacres = ln(acres) is created. 

Appendix C shows the Kernel density plot of acres. There are some instances in which acres 

equals 0; for the reasons described above in the description of logmegawatthours, in such cases 

logacres is set to equal ln(3) = 1.099. 

 

avgpm: The average particulate matter 2.5 (PM2.5) during time period (t) of the county in which 

solar farm (i) is located. 

 

uv: The average UV index of county (i) during month (t) from the year 2010 to 2020. Because 

this variable is the average over the course of 10 years, each month has the same UV index over 

the three years included in our analysis (i.e. uvi201805, uvi201905, and uvi202005 are the same value).  

This could contribute to internal invalidity. 

 

logprecipitation:  The natural log of the total precipitation in county (i) during time period 

(t).  Because the variable precipitation is skewed, logprecipitation = ln(precipitation) 

is created.  Appendix D shows the Kernel density plot of precipitation.  There are some 

instances in which precipitation equals 0; for the reasons described above in the description 

of logmegawatthours, in such cases logprecipitation is set to equal ln(0.005) = -5.298. 

 

Descriptive Statistics  

 Variable  Obs  Mean  Std. Dev.  Min  Max 

 logmegawatthours 900 6.713 2.067 2.1 11.315 

 logacres 897 2.344 2.291 1.099 11.94 

 avgpm 900 45.697 21.933 5.778 147.667 

 uv 900 4.78 1.447 2 9 

 logprecipitation 900 -1.633 2.655 -5.298 3.041 

 

  



 

 

  II.B       Correlation Table 

 

Matrix of correlations  

  Variables   (1)   (2)   (3)   (4)   (5) 

 (1) logmegawatth~s 1.000 

 (2) logacres 0.090 1.000 

 (3) avgpm -0.011 0.124 1.000 

 (4) uv 0.249 0.393 0.027 1.000 

 (5) logprecipitation -0.184 -0.367 -0.254 -0.659 1.000 

 

III. Description of the Econometric Model 

 

 The data collected for this analysis is panel data, and fixed effects regression models are 

utilized in this paper. The panel variable is solarfarmid and the time variable is yearmonth. 

Variations of two fixed effects regressions will show a) the effect of wildfires on particulate 

matter and b) the effect of particulate matter on solar energy production. 

 

III.A      Estimating Particulate Matter 

 

To quantify the effect of wildfires on particulate matter, we begin with the following 

regression model: 

(1)      avgpm̂it = 0 + 1logacresit 

 

Followed by a regression controlling for precipitation: 

 

(2)   avgpm̂it = 0 + 1logacresit + 2logprecipitationit 

 

where 0 is the constant term and 1 and 2 are the coefficient estimations for logacres and 

logprecipitation, respectively. 

 

III.B      Estimating Solar Energy Production 

 

To quantify the effect of particulate matter on solar energy production, we begin with the 

following regression model: 

 

(3)    logmegawatthourŝ it = 0 + 1avgpmit 

 

Followed by a regression controlling for UV and precipitation: 

 

(4)  logmegawatthourŝ it = 0 + 1avgpmit + 2uvit + 3logprecipitationit 
 

where 0 is the constant term and 1, 2, and 3 are the coefficient estimations for avgpm, uv, and 

logprecipitation, respectively. 

  



 

IV. Empirical Results 

 

 (1) (2) 

 PM2.5 PM2.5 

   

Acres 0.891** 0.126 

 (0.385) (0.402) 

 

Precipitation 

  

-1.633*** 

  (0.252) 

 

Constant 

 

43.59*** 

 

42.72*** 

 (0.903) (0.892) 

   

N 897 897 

 

R2 

 

0.012 

 

0.057 

   

Robust standard errors in parentheses 

*** p<0.01, ** p<0.05, * p<0.1 

 

 (3) (4) 

 Megawatt hours Megawatt hours 

   

PM2.5 -0.00492*** -0.00427*** 

 (0.000921) (0.000546) 

 

UV 

  

0.183*** 

  (0.00763) 

 

Precipitation 

  

-0.0215** 

  (0.0102) 

 

Constant 

 

6.938*** 

 

5.999*** 

 (0.0421) (0.0315) 

   

N 900 900 

 

R2 

 

0.026 

 

0.293 

   

Robust standard errors in parentheses 

*** p<0.01, ** p<0.05, * p<0.1 

  



 

 

IV.C.1 Statistical Significance of Regressions Estimating Particulate Matter 

 

          Regression (3) looks at just particulate matter to estimate solar energy production. The 

coefficient is negative and is statistically significant at the  = 0.01 level. This indicates that 

megawatt hour decreases when PM2.5 increases. Regression (4) examines the effect of particulate 

matter on megawatt hours when controlling for UV index and precipitation. In this case, avgpm 

and uv are statistically significant at the  = 0.01 level, while logprecipitation is significant at the 

 = 0.05 level. 

 

IV.D.2 Economic Significance of Regressions Estimating Solar Energy Production 

 

Both regressions indicate that particulate matter negatively affects solar energy 

production. This conclusion does not change when controlling for UV index and precipitation.  

Regression (3) demonstrates that when particulate matter increases by 1%, solar energy 

production decreases by 0.00005 megawatt hours. Regression (4) shows that when controlling 

for the UV index and precipitation, solar energy production falls by 0.00004 megawatt hours 

when particulate matter increases by 1%. When holding particulate matter and UV index 

constant, a 1% increase in precipitation results in a decrease of 0.0002 megawatt hours produced. 

 

V.A Internal Validity 

 

Data is inherently imperfect. So is the dataset used in this analysis. The internal validity 

of the data is threatened, for example, by the imperfect measure of the UV index of county (i) 

during time period (t). The only available UV index data that was found on the county level was 

the average UV index of county i during month t over the course of 2010 through 2020. This 

means that for county i in month 5, uvi201805, uvi201905, and uvi202005 are the same value.  The data 

could suffer from internal validity because this measure of uv does not provide a perfect 

explanation of a county’s UV index on the megawatt hours of solar energy produced. 

An additional threat to the internal validity is possible simultaneous causality bias in the 

data. In this study, particulate matter, temperature, and other atmospheric indicators are used to 

estimate solar energy production. It important to note that it is probable that solar plants are 

placed in strategic locations with advantageous weather conditions that will maximize megawatt 

hours production.  

For this reason, a robust and diverse sample is necessary.  Data was intentionally selected 

to be diverse and special attention was paid to geography. Future studies could perform similar 

tests instead using instrumental variables or a differences-in-differences approach to rectify such 

issues. As in any econometric analysis, a more expansive data set leads to more robust 

conclusions. Expanding the data by including more years or more counties in California is quite 

possible. This study analyzes only one solar farm per county but multiple solar farms per county 

over the course of decades would increase the reliability of our results. Future researchers could 

study multiple solar farms per county over the course of several decades to achieve more robust 

results. 

  



 

 

V.B   External Validity 

 

Appendix E is a map of California with the counties represented in this study outlined in 

bold black. Of the 58 counties in California, 25 are included in the sample. As seen on the map, 

every region in California except the Eastern Sierra is represented in this study. Therefore, the 

results of this study can be applied to the rest of the state. California is a one of the most 

geographically diverse states with deserts, mountains, valleys, coasts, and forests. Due to 

California’s vast diversity, these results can be applied to other parts of the United States, 

particularly the western United States. This study is, therefore, externally valid. 

 

VI. Conclusions 

 

The year 2020 was a record-shattering year for wildfires in California, during which over 

4.3 million acres burned. 2018 was also a devastating year - nearly 2 million acres were burned 

by wildfire. 2019, while flanked by two years in which wildfires ravaged the state, only had 

about 250,000 acres burn.9 This time span, although short, is representative of the effects of both 

particulate matter and precipitation on solar energy. The year 2018 had fewer wildfires than 2020 

and, therefore, more solar energy was produced. This was because of clearer, less polluted skies 

in 2018. Given the results of the regressions above, it could be hypothesized that because 2019 

experienced the least number of wildfires, it would have experienced the most megawatt hours 

produced. Following this hypothesis, trailing far behind would be 2018, and 2020 should have 

produced the least megawatt hours. However, this is not the case: of the three years included in 

this study, 2019 actually came in last in solar energy production. The disconnect between the 

reality of the data and the results from the regressions are surprising. The reason for this disparity 

lies in precipitation. In 2019, there was almost twice as much precipitation as in 2018 and nearly 

three times the amount of precipitation as 2020. Appendix F compares the average acres burned, 

average megawatt hours produced, average particulate matter, and average precipitation per 

county for these years. 

 

V.A Policy Implications 

 

The regressions above and evidence between years 2018 and 2020 confirm that 

particulate matter does negatively affect solar energy production as hypothesized. However, as 

shown in regressions (2) and (4) and witnessed in 2019, precipitation has a much larger and more 

influential impact on solar energy production than does wildfire-produced particulate matter. 

This means that while California should continue dedicating resources to decrease the size and 

intensity of wildfires in the state, such as proper forest management, there may be only so much 

that the state can do. The goal of achieving 100% reliance on clean energy by 2045 is still 

possible, and solar energy will likely be a large component of its success. But as great as the 

state’s efforts are to decrease the effects of wildfires, the balance between precipitation and 

particulate matter that maximizes solar energy production is delicate.  

Unfortunately, precipitation is the one factor that cannot be controlled. While small 

amounts of precipitation create clear skies, which then maximize solar energy production, as 

 
9 California Department of Forestry and Fire Protection (CAL FIRE). “Incidents Overview.” 



 

seen in 2018, too much precipitation can cloud the skies and deplete solar energy production, as 

witnessed in 2019. California is currently at risk of exactly this: 2023 has experienced 

unexpected amounts of precipitation, with some experts claiming that California’s drought is 

“effectively over.”10 The extreme amounts of precipitation received in the first quarter of this 

year may negatively affect the amount of solar energy produced. Fortunately, the highest solar 

energy production months in California are May through September.11  

The extreme amounts of precipitation received in the first quarter of 2023 may result in a 

mild wildfire season in the Western United States, which will result in lower levels of particulate 

matter and ultimately result in higher levels of solar energy production. However, this is yet to be 

seen; while 2023 has received precipitation at opportune times, other years will not receive 

precipitation, resulting in more intense wildfire seasons and higher particulate matter, or will 

receive precipitation during the peak solar energy production window, which will result in 

cloudy skies. What the years 2018, 2019, and 2020 testify and what is reiterated now in 2023 is 

that solar energy production is ultimately too unreliable to serve as the foundation of the state’s 

lofty energy goals.  

  

 

 

 

 

 

  

 
10 Adams, A. B. (2023, March 12). CA Drought: Recent Storms Put the 'Nail in the Coffin' for 

Drought. 
11 “Why Is Spring the Best Time to Go Solar in California?” (2023, 29 March). 



 

 

VI.         Appendix 

Appendix A 

 
Appendix B 

 
  



 

 

Appendix C 

 
Appendix D 

 
 

 

 

 

  



 

 

Appendix E 

 
Appendix F 

year acres megawat~s avgpm precipita~n 

2018 1110.082 6498.637 48.93051 1.447233  

2019 179.7592  5458.153 38.17737 2.310033  

2020 1661.323  5903.387  49.9834  .8636333  
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