2014

Leaf Mechanical Strength Corresponds to Tissue Water Relations in Twelve Species of California Ferns

Breahna M. Gillespie
Pepperdine University

Stephen D. Davis
Pepperdine University

Jarmila Pitterman
Pepperdine University

Follow this and additional works at: https://digitalcommons.pepperdine.edu/sturesearch

Part of the [Biology Commons](https://digitalcommons.pepperdine.edu/sturesearch)

Recommended Citation

https://digitalcommons.pepperdine.edu/sturesearch/132

This Research Poster is brought to you for free and open access by the Undergraduate Student Research at Pepperdine Digital Commons. It has been accepted for inclusion in Featured Research by an authorized administrator of Pepperdine Digital Commons. For more information, please contact Katrina.Gallardo@pepperdine.edu, anna.speth@pepperdine.edu.
Abstract

The dominant vegetation types in southern California’s coastal foothills are chaparral and coastal sage scrub. Chaparral shrubs have mechanically strong evergreen leaves whereas coastal sage scrub bear mechanical weak, deciduous leaves. What about the ferns that live in the understory of these vegetation types, especially considering their adaptations to a summer dry, Mediterranean-type climate? We tested the hypothesis that some fern leaves are stronger than others and mechanically strong leaves are associated with greater dehydration tolerance. Twelve fern species were examined. Tissue water relations were assessed via pressure-volume curves using Scholander-Hammer pressure chambers. We estimated osmotic potential at saturation (Ψsat) and at the turgor loss point (Ψtlp). We examined pinna strength using an Instron Mechanical Testing Device to measure Young’s Modulus (YM) and tensile stress at break (TSD). We also measured vein density to determine if it was associated with mechanical strength.

We found significant differences among our 12 fern species. Young’s Modulus was positively correlated with dehydration tolerance of leaf tissues, increasing with osmotic potentials at saturation (r² = 0.514) and osmotic potentials at the turgor loss point (r² = 0.538). Consistent with our initial hypothesis, we also found vein density to increase with mechanical strength and Young’s Modulus to increase with increasing tissue stress at break. We conclude that similar to species of chaparral shrubs and coastal sage scrub in California the mechanical strength that increasing mechanical strength of leaves may be associated with increasing dehydration tolerance of their cellular tissues.

Introduction

Ferns are an often overlooked group of plants—little data can be found in the literature regarding either water relations or pinna mechanical strength. Because they produce neither lumber nor fruit, industries find little value in these primitive plants. However, evolutionarily and ecologically ferns comprise significant understoreys in California’s plant communities, from redwood forests to evergreen chaparral shrubs (see photos below).

Despite the lack of attention, study of the progenitors of gymnosperms and angiosperms, many provide insight to evolutionary adaptations in a broad context. Not only are ferns a good model, they can also be a natural warning system in changes in the environment. As temperatures increase due to global warming, less water will be available for plants and those that rely more heavily on rainfall are at risk of disappearing.

Materials and Methods

Six fern species from Santa Cruz (Figure 1) and eight from the Santa Monica Mountains (Figure 2) were examined. One frond from twelve individuals of each species was cut at the base of the stipe and stored in an airtight plastic bag with wet paper towels to maintain moisture and transferred to the lab for measurements.

Two pinnae from each frond were excised and immediately placed into the Instron Mechanical Testing Device (Model 5544A, Norwood, MA) and the Young’s Modulus of elasticity and tensile stress at break was calculated using standard software. Imagery (NIH-image software) analysis was used to determine the vein density on each species at three.

Pressure-volume curves were created by cutting the end of the frond under water and allowing it to rehydrate for a couple of hours. A series of readings on a Scholander-Hammer pressure chamber and weightings with an analytical balance after each measurement estimated the turgor loss point and bulk’s modulus of elasticity. This method follows the one given in Saruwatari and Davis (1989).

Twelve individuals were randomly chosen to represent the population and readings of the microenvironment were based on them. Readings from a Sunfleck centeporimeter (Model LP-80, Pullman, WA) in the four cardinal directions measured photosynthetically active radiation (PAR) that each experimental plant received at the time of sampling. A soil moisture probe (Model CD-620, Campbell Scientific, Logan UT) was also inserted into the ground at four points, estimating the water content in the soil. A kestrel weather meter was used to find, wind velocity, air temperature, relative humidity, and dew point.

Results

The results support my initial hypothesis that pinna of fern species found in xeric conditions are mechanically stronger than those in mesic environments.

- Tissue dehydration-tolerance based on osmotic potentials at saturation and turgor loss point correspond to greater mechanical strength.
- Greater vein density corresponds to greater mechanical strength.
- Microenvironmental factors measured at each fern’s habitat at time of sampling did not correlate with mechanical strength.

Discussion and Conclusions

Works Cited

Acknowledgments

This research was funded by the National Science Foundation, Research Experience for Undergraduates REU Site Grant WBI-1067272 and the Natural Science Division of Pepperdine University. Special thanks to Helen Halmund, Amir Mohmood, Nathaniel Grundemann, Cobin Byrne and DrFrank Ewers, Monica Evers.