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Abstract

Materials and

Methods

Discussion & Conclusions

In a region where drought is severe, ecological surveys provide insight into
the adaptations of organisms living on the edge of survival. In this study, the
mechanisms of drought tolerance for eight species of ferns in the Santa
Monica Mountains were assessed with a focus on foliar water uptake and
resurrection strategies. We find that species are significantly different (P <
0.001) in their ability to absorb water through leaves (assessed
gravimetrically) and correlate this to minimum seasonal water potential and
hydrophobicity of leaf surfaces. Secondly, we irrigated Pentagramma
triangularis in the field and tracked chloroplast recovery. We found possible
evidence of embolism reversal. Taken together, this study explored the
methods of survival of the most ancient family of vascular plants.

Introduction

Water scarcity is at an all time high in the Santa Monica Mountains of California.
Of the world’s five mediterranean-climate ecosystems, mean annual rainfall is
lowest in California, where the drought is most consistent and the dry season lasts
at least six months (Cowling et al. 2005). Chaparral is the dominant vegetation
type in these ecosystems, exhibiting numerous mechanisms of withstanding
drought stress. Best assessed by overall plant survival, drought tolerance refers to
the extent with which a species can withstand long periods without precipitation.
All fern species in the Santa Monica Mountains must have some method of
drought tolerance in order to persist. The four methods of drought tolerance
applicable to this study are: water stress tolerance, water stress avoidance,
desiccation tolerance, and drought escape.

Interestingly, a survey of eight species of ferns in the Santa Monica Mountains
reveals at least one fern species that fits in each of these categories. Water stress
tolerance is defined as the tolerance to tissue dehydration (i.e. low water
potentials and/or cavitation resistance) and is seen in Dryopteris arguta, an
evergreen specie. Water stress avoidance is defined as species that occupy
microsites where water is found, a mechanism seen in Woodwardia fimbriata and
Adiantum capillus-veneris. Desiccation tolerance refers to the ability of an
organism to dry to equilibrium with the air and then regain normal functioning
upon rehydration (Alpert 2006), and we believe this rare phenomenon is occurring
in Pentagramma triangularis and Pellaea andromedifolia. Plant species can also
be characterized with regard to their life history type. For instance, deciduous
species such as Pteridium aquilinum, Adiantum jordaniii, and Polypodium
californicum, which we consider as drought escapers, lose photosynthetically
active tissue in the winter months whereas evergreen species preserve their
leaves throughout the year. Drought deciduous species escape water stress of
tissues by going dormant during periods of drought: evergreen species endure
tissue water stress by structural and physiological mechanisms.

Parallels can be drawn between these fern species and corresponding chaparral
species, which may help explain how ferns co-occurring within chaparral shrub
communities. Most importantly, the ability of ferns to persist under severe
drought, as predicted for climate change in California, is not well documented and
challenges previous assumptions that ferns fail to withstand very negative water
potentials (severe water stress of their tissues).

Foliar uptake is the process by which water is absorbed by stems and leaves
(Rundel 1982). Ferns differ from angiosperms and gymnosperms in that xylem
transport is a poor predictor of water relations in ferns (Pittermann et al. 2013).
Unlike higher plants, which depend primarily on reinforced xylem tissue for water
transport and support from tension, previous studies suggest that ferns primarily
depend on stored water (capacitance) and foliar uptake for water (Limm et al.
2009; Limm and Dawson 2010). Xylem transport is thought to play a secondary
role (Pitterman et al. 2013). Evolutionarily, if xylem transport is relatively recent,
how are ferns tolerant of drought induced water stress?
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Figure 6. Thirteen microsites
with Pt were irrigated in situ
with 9.5 L of water. Irrigation
was done a total of 5 times.
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were taken at 0.1 m before
irrigation and after 5 times of
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Fig. 10:

Foliar water uptake (g/m? min) compared for 8 species of the Santa

Monica Mountains by one-way ANOVA, followed by log-transformed Fisher’s
LSD test. Letters denote significance; P < 0.001. Bars represent £ 1S.E. n=6-12

regression R2=0.71. Bars represent + 1 S.E. n=6-12.
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Figure 12: Seasonal midday water potential (MPa)
from November 2013 - June 2014. Bars
represent+ 1 S.E. n=6.

Hypotheses:
1. We hypothesize that drought tolerant ferns will have
higher foliar water uptake than drought escaping ferns.

2. Pentagramma triangularis will desiccate completely,
but will resurrect in response to irrigation in situ.

Study Sites

All fern species were collected from three sites in the Santa Monica
Mountains.
These sites include the Piuma Road Backbone Trail, Cold Creek Canyon
and Newton Canyon.

Abbreviations for Species Studied
Aj — Adiantum jordanii Pq — Pteridium aquilinum
Ac — Adiantum capillus-veneris Pc — Polypodium californicum
Da — Dryopteris arguta Pt — Pentagramma triangularis
spp. triangularis

Wf — Woodwardia fimbriata

Pn — Pellaea andromedifolia

H2

Soil ¥ (MPa) Before and After Irrigation
?_20 0.05
o [P <0.001 R°=0.98
= [n=12 n = 15-69
- 0.04 |
£ -15 |
- I
o i —_
T | Eoosl
10 | EJ' $
S ] Q ;
o | Eoo2|
| & B - —
% 51 o
i Seasonal Dormancy Point
S 0.019
Uo) 0 _ |
Before Irrigation  After Irrigation 0 1 1
Figure 14: Soil water potential at 0.1 m before and after 0.1
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Figure 15. Fluorescence recovery during irrigation period.
Optimal Fv/Fm functioning occurs ~ 0.8. n = 16-53.
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a) Mean diameter of Pt pinnae during irrigation period (m).

Linear regression R? = 0.98. Bars represent + 1 S.E. n = 15-69. b) Height of
uncurled fronds during irrigation period (m). Linear regression R? = 0.97.
Bars represent + 1 S.E. n = 15-51.
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Figure 13: Contact angle, in degrees, (measure of

hydrophobicity of leaf) versus FWU (g/m? min). Aj not
included in linear regression to better represent normal
ecological trend. Linear regression R? = 0.52. Bars
represent + 1 S.E. n = 6-12. Photo shown
demonstrates finding the contact angle for Ac.

H1: This comparison of foliar water uptake for eight species of ferns in
the Santa Monica Mountains shows wide variation in the capacity for
uptake among species. For example, Aj was four-fold higher than Ac
which is of interest considering these species are in the same genus
(figure 10). When comparing foliar water uptake to minimum seasonal
water potential and contact angle, a correlation exists for seven of the
eight species (figures 11 & 13). Seasonal water potential data shows
that Da is unlike the other seven species (figure 12). Importantly, a
previous study done in the Californian redwood forest suggests that
water status of the fern does not impact absorption; however our
results suggest otherwise, perhaps due to drought (Limm and Dawson
2010). Additionally, Aj has higher foliar absorption than the other
species but contact angle is not a good predictor of foliar water uptake
in this situation showing other factors than hydrophobicity impact
foliar uptake.

H2: Rehydration of Pt in the field reveals a multi-day “waking up”
period where the chloroplasts are regaining function (figure 15). It is
possible that this is a protection mechanism in that a lag time from
irrigation allows the plant to increase root pressure until the fronds
can finally uncurl. Data suggests that the shortest and smallest fronds
uncurl first, perhaps as a function of embolism reversal (figure 16 &
17).

 Species found in water, such as Wf and Ac, exhibit low
capacity for foliar water uptake, whereas ferns that grow
on dry hillsides, such as Aj and Pc, exhibit the highest
capacity for foliar water uptake.

 Contact angle is a measure of leaf surface hydrophobicity
that negatively correlates with foliar water uptake.

Pt exists by utilizing a resurrection strategy, perhaps
facilitated by positive root pressure that could reverse
embolism.

This study demonstrates the importance of ecological niches in fern
survival. In the Santa Monica Mountains, where drought is a key
limiting factor, the exploitation of different survival mechanisms allows
for continuing success even in dry conditions. Evolutionarily, the
patterns observed in ferns “living on the edge” sheds light into the
continued success of these ancient vascular plants.
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