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In this paper we analyze the frequency and information content of small Nasdaq stock 

trades and their impacts on return volatility at the intraday interval.  We employ an 

autoregressive conditional duration (ACD) model to estimate the intensity of the arrival and 

information content of trades by accounting for the deterministic nature of intraday periodicity 

and irregular trading intervals in transaction data.  We estimate and compare the price 

duration of thinly and heavily traded stocks to assess the differential information content of 

stock trades. We find that the number of transactions is negatively correlated with price 

duration or positively correlated with return volatility.  The impact of the number of 

transactions on price duration or volatility is higher for thinly traded stocks.  On the other 

hand, the persistence of the impact on price duration adjusted for intradaily periodicity is 

about the same for thinly and heavily traded stocks on average.   
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Introduction 

The subject of price formation has always been intriguing to financial researchers.  A 

vast financial literature has been devoted to the study of the pattern of information arrivals and 

how new information is incorporated into price.  These studies range from simple event 

studies of the market response to news announcements, to more sophisticated information 

flow studies analyzing how information innovations are impounded into security prices.  

Interest in this issue has been fueled by recent advances in market microstructure theory and 

the availability of ultra-high-frequency data, thanks to modern technology.   

 The shift to high-frequency data analysis has posed significant challenges to empirical 

studies.  A major difficulty faced in high-frequency data studies is that transactions arrive in 

irregular time intervals.  Most empirical microstructure studies have employed data with a 

fixed time interval (e.g., hourly or half-hourly) to test the implications of market 

microstructure theory (see, for example, Foster and Viswanathan, 1995; Andersen and 

Bollerslev, 1997).  This is because standard time-series econometric techniques build on the 

premise of fixed time intervals.  The selection of the time interval is often arbitrary.  Large 

heavily-traded stocks typically have transactions every few seconds whereas small thinly-

traded stocks may not have transactions every hour or day.  If a short time interval is chosen, 

there will be many intervals with no transactions for thinly traded stocks and 

heteroskedasticity of a particular form will be introduced.  On the other hand, if a long interval 

is chosen, we may lose most of the microstructure features of the data. In particular, when 

transactions are averaged, the timing relation and characteristics of trades will be lost.   

Empirical microstructure studies that examine transaction-by-transaction data (see, for 

example, Hasbrouck, 1991; Madhavan et al., 1997; Huang and Stoll, 1997) face a different 

estimation problem.  Data points in these studies correspond to the transaction (event) time 

and so they are irregularly spaced.  However, these studies have typically ignored the problem 

of irregular intervals when applying standard time-series econometric techniques.  Assuming 

that data points are equally spaced, when in fact they are uneven, leaves out much of the 

important information about trade clustering, temporal order flow patterns and the information 

assimilation process.   

Fortunately, new econometric methods have been developed recently to cope with the 

estimation problems of irregularly spaced data (see Engle, 2000; Dufour and Engle, 2000).  

Two time-series methods were developed to model irregularly spaced data: Time Deformation 

models (TD) and Autoregressive Conditional Duration (ACD) models.  The TD approach uses 

auxiliary transformations to relate observational or economic time to calendar time.  In 

contrast, the ACD approach directly models the time duration between events (e.g., trades).  

The ACD model typically adopts a dependent point process suitable for modeling 

characteristics of duration series such as clustering and overdispersion. In this paper, we 

employ the ACD model proposed by Engle and Russell (1998) to examine information 

clustering and trading responses to information at the intraday level. There are advantages of 

using this model.  First, this model provides a framework for measuring and estimating the 

intensity of transaction arrivals that is particularly suited for the trading process.  The model 

accounts for the irregular time interval, typically encountered in stock trading, by treating it as 

a random variable that follows a point process. This treatment resolves infrequent or 

nonsynchronous trading problems in empirical estimation using intraday data of thinly traded 
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stocks.  Second, the estimation procedure is relatively straightforward and the model can be 

easily adapted to test various microstructural hypotheses. 

The primary objective of this paper is to examine the patterns of information arrival of 

small thinly-traded versus large heavily-traded stocks, and their impact on price movements.  

The trading pattern and the intensity of information-based trading of small thinly-traded 

stocks often deviates sharply from that of large heavily-traded stocks.  Aside from the sheer 

difference in trading frequency, large stocks enjoy much higher liquidity than small stocks.  

Studies have shown that a good proportion of trades for large heavily-traded stocks is for 

liquidity purposes (see Easley et al., 1996).  Thus, trades for large heavily-traded stocks may 

not always have high information content.  Conversely, small stocks are not as liquid and are 

not traded as heavily as large stocks.  Fewer analysts are interested in these stocks and so less 

information is available for investors.  Due to lack of information and liquidity, there are 

typically no transactions for a good portion of the open market trading period.  However, 

trading of these stocks often causes a significant price movement.  Thinly traded stocks also 

have higher variations in order flow.  Trades are clustered in that the occurrence of a trade 

induces another trade in a rather short time interval.  Once these stocks are traded, there is a 

high probability that informed traders may trade to minimize price impacts (see Admati and 

Pfleiderer, 1988).  As insiders‟ private information is impounded into price, return volatility 

increases.  Since the number of trades is low for small inactive stocks, the information content 

per trade may be higher for these stocks.   

 In this paper we focus on the intensity of transaction arrivals and its effects on price 

movements of thinly-traded stocks in the Nasdaq market.  Previous studies have shown that 

the price discovery process and bid-ask spread behavior of a dealer market such as Nasdaq 

differ from those of a auction market like the NYSE (see Hasbrouck, 1995; Huang and Stoll, 

1996).  Differences in market structures and trading mechanisms cause variations in trading 

costs, order flows and the speed of information transmission.  Therefore, empirical findings of 

NYSE stocks do not necessarily characterize Nasdaq stocks.  One distinct feature of Nasdaq is 

that the depth of the market often varies widely among stocks.  This greater dispersion in 

trading activities provides an excellent opportunity for comparing the intensity of trade 

arrivals and the extent to which trades convey information for heavily- and thinly-traded 

stocks.  Most empirical microstructure studies have not accounted for the uneven intervals in 

stock trades in examining the issues of order flow and information assimilation.  An exception 

is Dufour and Engle (2000).  However, their study covers only the most actively traded stocks 

at the NYSE.  Unlike their study, we examine both the active and inactive stocks on Nasdaq. 

 The remainder of this paper is organized as follows.  Section I presents the empirical 

model and methodology for estimating the intensity of trade arrivals and the effects of 

microstructure variables on the time duration of trades and price changes.  Section II discusses 

data and empirical results.  Finally, Section III summarizes the main findings of this paper. 

  

I. The Model 

 Information arrivals induce trades and price changes (see Admati and Pfleiderer, 1988; 

Easley and O‟Hara, 1992).  To analyze information flow at irregular arrival times, we employ 

the autoregressive conditional duration (ACD) model proposed by Engle and Russell (1998).  
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Denote the interval between two arrival times, xi = ti - ti-1, as duration.  The expectation of the 

ith duration conditional on past ix ‟s is given by  i , where 

 

 );,...,,(),...,,|( 121121   xxxxxxxE iiiiiii   (1) 

 

where  is the vector of the parameters of the duration process.  Assuming that the stochastic 

process of the duration is 

 

 iiix   (2) 

 

where i is an i.i.d. error term with a distribution which must be specified.  Following Engle 

and Russell (1998), we specify the conditional duration by a general model:  
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which follows an ACD (m, q) process with m and q referring to the orders of the lags, and 

),,,( kj   j = 1, 2,…, m and k = 1, 2,…, q, are parameters to be estimated.  This model 

has a close connection with GARCH models and shares many of their properties. The model 

is convenient because it can be easily estimated using a standard GARCH program by 

employing the square root of xi as the dependent variable and setting the mean to zero (see 

Engle and Russell, 1998).  In general, if durations are conditionally exponential, the 

conditional intensity is  

 

 1

1)t(N1)t(N )x,...,x|t( 

  (4) 

 

It can be shown that the higher the conditional intensity, the higher the volatility of returns. 

 There are several ways to estimate the system of (2) and (3).  The simplest way is to 

assume that the error term follows an exponential distribution and the lagged orders equal to 

one.  This model is called the EACD(1,1) where E stands for the exponential distribution.  

Another way is to assume that the conditional distribution is Weibull, which is equivalent to 

assuming that x  is exponential where  is the Weibull parameter.  Similarly, we can estimate 

the Weibull model with the lagged orders equal to one, that is, WACD(1,1). 

 

The Weibull distribution function can be written as  

 

 F( ix ) = ( / i 
) ix

-1
 exp[-( ix / i )

]     for   , i > 0   (5) 

 

When  = 1, ix / i  follows an exponential distribution.  The Weibull distribution is preferred 

if the data show an overdispersion with extreme values (very short or long durations) more 

likely than the exponential distribution would predict (see Dufour and Engle, 2000). Given the 
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conditional density function, we can estimate the parameters of the ACD model by 

maximizing the following log likelihood function: 

 

 L() = )/ln(
1

i

T

i

x


 +  ln[ )/11(  ix / i ]  –  [ )/11(  ix / i ]

   (6) 

 

where (.)  is the gamma function, and  is a column vector containing the parameters to be 

estimated. Engle and Russell (1998) commented that clever optimization can avoid repeated 

evaluation of the gamma function. This tactics is useful when the sample size is very large. 

The ACD model is essentially a model for intertemporally correlated transaction 

(event) arrival times.  The arrival times are treated as random variables following a point 

process. In the context of security trading, associated with each arrival time are random 

variables such as volume, price or bid-ask spread.  These variables are defined as “marks”.  

Finance researchers are often interested in modeling these marks associated with the arrival 

times.  For example, not all transactions occur because of the arrival of new information.  

Instead, some are triggered by pure liquidity or portfolio adjustment reasons, which are not 

related to changes in the expected (fundamental) value of stock.  On the other hand, there are 

times when transactions occur as a result of new information arrival that is not publicly 

observable. Market microstructure theory suggests that traders possessing private information 

will trade as long as their information has value. This results in clustering of transactions 

following an information event.  To examine this hypothesis, we can define the events as a 

subset of the transaction arrival times with specific “marks”.  For example, to examine the 

effect of information events, we can select data points for which price has moved beyond the 

bid-ask bound.  This process is called dependent thinning. 

 To distinguish informed from uninformed trades, we modify transaction arrival times 

into price arrival times.  The basic idea is to leave out those transactions that do not 

significantly alter price. The price movements can be classified either as transitory or 

permanent movements.  Define the midpoint of the bid-ask spread or “midprice” to be the 

current price.  Following Engle and Russell (1998), we define a permanent price movement as 

any movement in the midprice (midquote) greater than or equal to $0.25 or 2 ticks.
1
  Once we 

define the price arrival times, we can apply the ACD model to these new event arrival times.  

In this case, we are modeling how quickly the price is changing rather than the arrival rate of 

transactions.  The intensity function is now called price intensity, which measures the 

instantaneous probability of a permanent price change.   

 The basic formulation of the ACD model parameterizes the conditional intensity of 

event arrivals as a function of the time between past events.  It can be easily extended to 

include other effects such as characteristics associated with past transactions or other outside 

influences.  For example, previous studies have shown that important information is contained 

in the number of trades, and the trade size which is the average volume per transaction.  To 

examine this hypothesis, we can modify the ACD model to include these two variables: 

 

                                                           
1
 A tick is 1/8 dollar. 
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where the duration is now between two consecutive prices with a movement greater than or 

equal to two ticks, and the number of transactions per duration and trade size per transaction 

are added as determinants of duration.  Market microstructure theory contends that trades 

contain information that affects price movements (or volatility).  Including the number of 

transactions and trade size allows us to test this important hypothesis. In addition, dividing the 

accumulated volume by the number of transactions yields the average volume per transaction 

(or trade size) at the interval x.  Previous studies have indicated that trade size may contain 

information.  The ACD model in (7) now describes how quickly the price changes, by taking 

into consideration the effects of transaction rate and trade size. The intensity function becomes 

a measurement of the instantaneous probability of a price movement called “price intensity.” 

It can be shown that price duration is inversely related to the volatility of price changes. 

 In addition to transaction frequency and trade size, we also test the ACD model with 

the bid-ask spread variable.  Microstructure theory suggests that the specialist‟s (or dealer‟s) 

bid-ask spread reflects the intensity of informed trading.  It will be interesting to see whether 

this variable will increase the explanatory power of the model.  Thus, we also estimate the 

following extended model: 

 

 






 
q

j

jij

p

j

jiji x
11

 +  #Trans +  Volume/Trans  +  Spread (8) 

 

where Spread is the bid-ask spread divided by mid-quote.   

 It is widely known that intraday return volatility exhibits significant deterministic 

(periodic) patterns.  Since price duration is the inverse of volatility, the duration measure is 

expected to contain a deterministic component.  This deterministic component needs to be 

separated from the stochastic component in empirical estimation. The strategy followed here 

to eliminate the intraday pattern is a simple seasonal adjustment approach. The time span 

within a trading day is divided into non-overlapping time intervals of 15 minutes each. The 

mean of price durations within each interval is computed over the entire sample period.  The 

adjusted price duration is then computed as the price duration divided by the average price 

duration within that interval.  The adjusted price duration series now has a mean 

approximately equal to one.  If the adjusted duration is greater (less) than one, the duration is 

greater (less) than the average duration in that time interval.  We estimate the ACD model 

using these adjusted price durations, as well as the raw (unadjusted) durations.
2
 

 

II. Data and Empirical Estimation 

 Data on price, size, and trading time for Nasdaq stocks are obtained from the TAQ 

database over the period of July 1 to September 30, 1997. Trades and quotes are selected 

                                                           
2
 We have also tried the spline method to filter the deterministic intraday components.  The results using this 

method are quite similar. 
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strictly for Nasdaq-listed firms, thus excluding NYSE stocks traded on Nasdaq and stocks 

listed on regional exchanges.  We also exclude all preferred stocks, stock funds, stock rights, 

warrants and ADRs.
3
  

 Previous studies (see, for example, Easley et al., 1996; Wu and Xu, 2000; Wu, 2003) 

have used trading volume as a measure for defining the activeness of stocks.  Following the 

influential paper by Easley et al. (1996), we use trading volume to classify the activeness of 

stocks for the purpose of comparing with their results.  Trading volume is a preferred measure 

for this classification because it contains the information of frequency and size of trades, both 

of which are important indicators of the activeness or depth of stocks.  We rank all Nasdaq 

common stocks by the average daily trading volume over the sample period, and then divide 

the sample into volume deciles.  The first volume decile includes the highest-volume stocks 

and the tenth decile contains the lowest-volume stocks.  To insure enough trading activities 

for purposes of empirical estimation, we choose stocks from the first, fifth and eighth volume 

deciles. To control for the price effect, we construct a matched sample of stocks having 

transaction prices close to each other at the beginning of the sample period (July 1), but at 

different levels of trading volume. Stocks from the three selected deciles are ranked in order 

of initial price and adjacent triplets of stocks are matched.  We randomly choose five matched 

stocks from each of the three volume deciles to perform empirical estimation.  We choose 

only five stocks from each volume decile for empirical estimation to alleviate the computation 

burden.   

Transaction duration can be easily computed as the time difference between 

consecutive trades. Consecutive trades with same time stamp and price are aggregated and 

treated as one trade.  We then “thin” the transaction data by constructing price duration with 

price changes greater than or equal to two ticks.  Volume is expressed in terms of the number 

of shares traded at each interval. 

Table 1A shows the summary statistics after dependent thinning where any  midquote 

movements less than two ticks are ignored.  More heavily traded stocks have lower spreads, 

more transactions (or shorter trade durations) and higher volume.  Note that the daily number 

of transactions (or trading frequency) in the high-volume group is higher than those in the 

medium- and low-volume groups for all stocks except DURA.  Similarly, the daily number of 

transactions (or trading frequency) in the medium-volume group is higher than that of low-

volume group for all stocks except PSUN.  In the analysis to follow, we compute the 

parameter estimates with and without these two stocks.  The averages without these two 

stocks represent the average parameter estimates of high and medium trading frequency 

groups.  After the data are “thinned” by price, the price duration still tends to be lower for 

more actively traded stocks.  On the other hand, trade size or the average volume per 

transaction is about the same for both active and inactive stock groups.  Table 1B lists the 

names of sample stocks. 

Figure 1 shows the average price duration throughout a typical trading day for three 

selected stocks.  The vertical axis indicates the price duration in seconds, and the horizontal 

axis indicates the intraday intervals.  We divide each trading day into 25 intervals of 15 

                                                           
3
 To avoid the problem at the market open (e.g., stale quotes, and delay of the open), data for the first fifteen 

minutes are dropped as suggested by Miller et al. (1994).  This avoids serious stale quote problems, especially 

for thinly traded stocks. 
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minutes each. The average price duration within each interval is computed over the entire 

sample period.  As shown, price duration exhibits an inverted U-shape pattern.  This is not a 

surprise since price duration is an inverse of price volatility, and intraday price volatility 

exhibits a pronounced U shape.  Price duration is negatively related to trading frequency or 

number of transactions.  As indicated, the price duration (in seconds) of ASND is much 

shorter than that of WIND because the former has a much greater number of daily transactions 

(see Table 1A).   

 

2.1 Model Estimation Using Unadjusted Data 

We first estimate the baseline ACD models with no microstructure variables.  We use 

the Polak-Ribiere Conjugate Gradient (PRCG) to obtain the MLE estimates of the ACD 

parameters.  The model is first estimated using the unadjusted price duration and then the 

adjusted duration.  The adjusted duration is the price duration adjusted for the intraday 

deterministic pattern.   

Table 2 reports the empirical estimates for the EACD(1,1) model using unadjusted 

data.  As shown, most parameter estimates are statistically significant.  The ARCH and 

GARCH parameters,  and , are positive in most cases, consistent with the prediction and 

their values fall in the theoretical range.  The results indicate that a short price duration is 

likely to be followed by another short price duration.  Or equivalently, high price volatility in 

the current trading interval is likely to bring high price volatility at the next trading interval.  

The sum of  and  represents the persistence of price duration.  The results do not show a 

material difference in persistence for high and low trading volume groups. 

Table 3 reports the estimates of the WACD(1,1) model.  Again, the estimates of  and 

 are positive in most cases and most of them are significant.  The Weibull parameter  is 

highly significant.  The values of the Weibull parameter are all less than one and tend to be 

smaller for less heavily traded stocks.  The results suggest that the EACD model is not 

suitable because the error term does not follow exactly the exponential distribution.  The 

persistence of price duration is measured by the sum of  and .  Ignoring CBSS, the result 

again does not show a material difference in persistence for high and low trading volume 

groups.
4
 

We next test the implications of market microstructure theories.  On theoretical 

grounds, Easley and O‟Hara (1992) predict that the number of transactions would influence 

the price process through the information-based clustering of transactions.  Admati and 

Pfleiderer (1988, 1989) predict that the number of transactions will have no impact on price 

intensity.  Glosten and Milgrom (1985) and Kyle (1985) predict that volume tends to be 

higher as the probability of informed trading increases.  Most empirical studies have 

documented a positive relationship between volatility and volume for both individual 

securities and portfolios. Schwert (1989) and Gallant, Rossi, and Tauchen (1992) find a 

positive correlation between volatility and trading volume.  Jones, Kaul, and Lipson (1994) 

show that the positive volatility-volume relationship actually reflects the positive relationship 

between volatility and the number of transactions.  Based on this finding, they conclude that 

trade size carries no information beyond that contained in the frequency of transactions.  None 

                                                           
4
 Note that although the estimate of  for CBSS is significantly negative, this estimate improves when adjusted 

price duration is used as dependent variable as shown in Table 6 below.   
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of these studies has addressed the issue of uneven trading intervals or infrequent trading.  In 

the following, we re-examine this issue using the ACD model at the intraday level.  

We estimate the ACD model with two additional explanatory variables: the number of 

transactions per duration and average trade size. Table 4 reports the results of estimation. The 

coefficients of the number of transactions are mostly negative. The results suggest that the 

expected price duration tends to be shorter, or equivalently the volatility is higher, following 

an interval of high transaction rates.  This relationship is much stronger for less-heavily traded 

stocks.  This conclusion holds regardless of whether DURA and PSUN are included or not.  

On the other hand, the effect of trade size is less conclusive.  The sign of the coefficients of 

average volume per transaction (or trade size) is negative for more-heavily traded stocks but 

positive for less-heavily traded stocks.  

Table 5 reports the estimates of the ACD model when the bid-ask spread is added as 

an additional explanatory variable.  The coefficients of the number of transactions  continue to 

be quite significant with a predicted negative sign. The coefficients of trade size again have 

mixed signs. The coefficients of spreads are generally negative, suggesting that higher spreads 

generally lead to shorter price duration (or higher volatility).  Excluding PSUN in the middle 

group does not change the conclusion.
5
 

 

2.2 Model Estimation Using Adjusted Data 

We next turn to the estimation of the ACD model using the adjusted data where 

price duration is adjusted for the intradaily periodicity.  Table 6 reports the estimates of the 

baseline WACD(1,1) model where no microstructure variables are included.  As shown, after 

removing the intraday deterministic effect to retain the stochastic component of price 

duration, parameter estimates of the WACD(1,1) model become much more stable. The 

parameters  and  are now all within the theoretical range with a sum less than one. The 

results suggest that it is necessary to account for the intraday periodic pattern in empirical 

estimation.  Again, the results show little difference in the persistence of price duration 

between the high- and low-volume stocks.  On average, the sum of  and  is quite close for 

the three groups.  

Table 7 reports the results of the WACD model with microstructure variables.  The 

coefficients of the number of transactions are all negative, indicating that the higher the 

number of transactions, the shorter the price duration.  The size of the coefficients (in absolute 

value) is much larger for less-heavily traded stocks.  The average value of the coefficient for 

the number of transactions is –0.51 for the lowest-volume group compared to -0.09 for the 

highest-volume group.  Excluding DURA and PSUN does not affect the results materially (-

0.06 for the high volume group).  Thus, the impact of the number of transactions (#Trans) is 

higher not only for low volume group but also for low trade frequency group. Another 

interesting finding is that the coefficients of trade size have mixed signs.  The sign tends to be 

negative for most-heavily traded stocks.  As the trading volume decreases, the sign becomes 

positive.  Thus, trade size does not necessarily decrease price duration (or increase price 

volatility). 

                                                           
5
 Note that DURA in the first group does not converge.  Therefore, the results for the high-volume group also 

represent the results for stocks with high-trade frequency. 
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Table 8 reports the results when bid-ask spread is added as an additional variable.  

Results show that the effect of spread is much higher for less-heavily traded stocks.  The 

coefficients of spread are mostly negative and significant for thinly traded stocks.  On average, 

the absolute value of the spread coefficient for the thinly traded group (-0.77) is much higher 

than that of the heavily traded group, which is close to zero.  Furthermore, the absolute value 

of the coefficient of the number of transactions is again much higher for the thinly traded 

group.  The average value of this coefficient is -0.55 for the thinly traded group compared to -

0.08 for the heavily traded group.  Excluding DURA and PSUN does not change the results 

materially (-0.06 for the heavily traded group).  Moreover, the coefficient of trade size 

(average volume per transaction) is positive, which contrasts with the negative sign of the 

trade size coefficient for the heavily traded group.  Thus, the price intensity appears to be quite 

different between active and inactive stocks.  The response of price intensity to the arrival of 

information, as captured by the spread and transactions, is much stronger for the thinly traded 

stocks than for heavily traded stocks.  The results support the contention that trades of thinly 

traded stocks have a larger impact on their duration (or volatility); that is, a trade of thinly 

traded stock tends to trigger another trade much faster.  This result also suggests a greater 

trade clustering for thinly traded stocks. 

 

2.3  One-Step-Ahead Forecast of Price Durations 

Figure 2 shows the one-step-ahead forecast of price durations in a trading day for three 

selected stocks ASND (July 2), SEBL (July 18) and WIND (July 14), respectively. These 

dates are chosen such that they are among the days with more transactions after the “thinning” 

process. The one-step-ahead forecasts are obtained as follows. Consider the ACD(1,1) model 

for duration in (3).  Define iii x   , which is a martingale difference sequence with mean 

0.  

 

Rewrite the ACD (1,1) equation in (3) as  

 

11)(   iiii xx    (3a) 

 

The price duration ix  therefore has an ARMA(1,1) representation, and its forecast can be 

obtained using the usual ARMA method.   

We employ the adjusted duration and compute its one-step-ahead forecast, using the 

WACD(1,1) estimates in Table 6. These forecasts are shown in the left-hand panel of Figure 2 

for three selected stocks. They are then multiplied back by the intraday periodic pattern (i.e., 

average duration with a typical shape as shown in Figure 1) according to the time of day the 

transaction occurs. The resulting forecast of the unadjusted duration is shown in the right-

hand panel of Figure 2.  The horizontal axis indicates the sequence of transactions for this 

particular trading day and the vertical axis indicates the duration. 

 Figure 2 shows that actual durations are in general subject to higher fluctuation than 

the forecasted durations.  As shown, the one-step-ahead forecast obtained by multiplying the 

adjusted duration forecast and the intraday periodic component performs reasonably well for 

the less-heavily traded stocks.  The forecasts for stock ASND, which is in the heavily traded 

group, is comparatively more stable at the level of around 1000 (seconds).  Incorporating the 
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deterministic intraday periodic component into the forecasting enhances the forecasting 

precision.  The results suggest that one needs to consider the intraday deterministic 

components to provide a good forecast for price duration. 

 Engle and Russell (1997) establish a relationship between price durations and 

volatility.  In brief, they assume the underlying price process is a binomial process with 

increments of c  which takes expected time  . They show (see eq. (22) of their paper) that 

the expected variance per unit of time is inversely related to expected duration; in particular, 

ii c  /ˆ 22  .  Using this relationship, we can transform our estimates of price duration to 

volatility. 

 

2.4 Impulse Response Function 

We next employ the concept of impulse response function to examine the impact of 

information shock on price duration.  Consider the ACD(1,1) model with a microstructure 

variable z,  

 

 iiii zx    11     (9) 

 

Let iii x   , and rewrite the ACD equation (9) as  

 

 iiiii zxx    11)(   

 

Denote  )1/(    as the mean, and B the back-shift operator such that 1 ii yBy .  It 

follows that  

 

iii z
BB

B
x

)(1)(1

1

















  

 

Let    be the sum of the ARCH and GARCH parameters.  The expansion  

...........
1

22 


kk BBB
B





 

 

is useful for studying the lasting effect of the microstructure variable z on duration.  

Furthermore, the lagged k term is k , which measures the impact of one unit increase in the 

microstructure variable z on price duration x (mean adjusted)  k-lags (or k-transactions) later.  

We refer to this term as the impulse response function at lag k. It is clear that for  less than 1 

in magnitude, the impact goes down to zero eventually. But the impact decreases with a 

„slower‟ rate or is more persistent, when  is closer to 1.  Also, we refer to  
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 )1/()1(..... 12   kk     (10) 

 

as the k-cumulative impulse response function of a unit increase in z on price duration x 

(mean adjusted) after k transactions. It goes to a limiting value of )1/(   . Note that the 

(first) difference in the k-th and (k-1)th cumulative impulse response function gives k . 

Table 9 reports the k-cumulative impulse response functions of two microstructure 

variables, number of transactions and average volume per transaction, based on the parameter 

estimates for adjusted duration in Table 7.
6
  For each stock, the first row reports the estimates 

of  , ,  ,  +  ,  , and  .  The second row reports the k-cumulative impulse response 

function of one unit increase in #Trans (the number of transactions per duration) for k = 0, 1, 

….., 9 lags later, and with the limiting value (when k is infinite) given as the last value.  

Similarly, the third row is the cumulative response functions that correspond to Volume/Trans 

(or trade size).  The results show that an increase of one unit in #Trans has a higher (negative) 

impact on price duration for stocks that are less active.  On the other hand, the impact of a unit 

increase in Volume/Trans on price duration is mixed and has no clear pattern across stock 

groups. 

The response function for #Trans is most interesting and is plotted in Figure 3 for each 

stock group of high, medium and low trading activities. The graph on the top left-hand corner 

shows the k-cumulative impulse response function (k = 0, 1, …, 99) for adjusted price 

duration after a unit increase in #Trans. These response functions are obtained based on the 

average WACD(1,1) and  estimates for each stock group as reported in Table 7.  As shown, 

the effect of a unit increase in #Trans has a higher (negative) impact on price duration for 

stocks that are less active.   

The two graphs on the bottom show the impulse response function k .  The graph on 

the lower right-hand corner is similar but with the   value set equal to –1 for all three groups. 

This setting aims at singling out the effect caused by the sum of the ARCH and GARCH 

parameters by standardizing the impact of #Trans.  For illustration, consider the thinly traded 

group in the lower left-hand corner of Figure 3.  If #Trans increases by one unit, after one 

transaction (k = 1), the change in adjusted duration is -0.51*(0.64+0.23)= -0.44 (see Table 7), 

which is the second point on the impulse response function for this group. We need to divide 

this number by 100 to obtain the actual amount of reduction because the unit of adjusted 

duration was multiplied by 100 in Table 7.  In other words, the reduction in adjusted duration 

due to a trade innovation is 0.44% of the average price duration (depends on the time of day) 

for this group after one transaction.  From Table 1A, we can compute the average duration for 

this group, which is 2,308 seconds.  Therefore, the reduction amounts to about 10 seconds per 

#Trans.  Since the average #Trans is 19 (from Table 1A) for this group, the overall reduction 

in price duration is about 190 seconds. Similar calculation shows the overall reduction is 

about 56 seconds after k = 10 transactions. 

From the lower left-hand corner of Figure 3, we again see that the effect of a unit 

increase in #Trans has a higher (negative) impact for stocks that are less active, which 

eventually goes down to zero.  After standardizing the impact of number of trades by keeping 

                                                           
6
 Results are qualitatively the same if we add the spread variable.   
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 the same (= -1), the graph on the lower right-hand corner shows more clearly that the 

persistence of impact on the adjusted price duration for the heavily and thinly traded stock 

groups is about the same.  Thus, while trades of thinly traded stocks have a larger impact (or a 

greater information effect), the duration of the impact is close to that of heavily traded stocks 

on average.  

 

III.  Summary 

 In this paper, we examine the frequency of information arrivals of small thinly-traded 

stocks and its impacts on price duration or return volatility at the intraday level.  We employ 

the autoregressive conditional duration (ACD) model to estimate the intensity of information 

arrivals and information content of trades.  The unique feature of this model is its ability to 

handle high-frequency transaction data recorded at irregular time intervals. 

 We find that intraday periodicity must be considered in the transaction data analysis.  

Our results show that the data adjusted for the intraday deterministic pattern produce much 

more stable parameter estimates.  In addition, the accuracy of forecasts is enhanced when the 

intraday pattern is accounted for in the one-step-ahead forecasting. 

 Our results show that there are differences in transaction and price durations between 

heavily and thinly traded stocks.  The impact of the number of transactions on adjusted price 

duration is much larger for thinly traded stocks than for heavily traded stocks.  On the other 

hand, the persistence of the impact on adjusted price duration is about the same between 

heavily and thinly traded stocks on average. The results show that the number of transactions 

has higher explanatory power than average trade size.  We also examine the impact of spread 

on price duration.  The results show a consistent significantly negative (positive) relationship 

between spreads and price duration (volatility) only for thinly traded stocks.  In addition, the 

effect of spreads is much stronger for thinly traded stocks, suggesting a larger impact of 

asymmetric information for these stocks. Overall, we find that the number of trades contains 

most of the relevant information affecting price duration or volatility, and the trades of thinly 

traded stocks have greater impact on price duration.  The results suggest that the trades of 

thinly traded stocks contain more private information than the trades of heavily traded stocks. 
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Table 1A 

Summary Statistics 
 

 

 

Stock 

Symbol 

No. of 

Durations 

Ave. 

Price 

Ave. Spread 

/Duration 

Ave. # Trans 

/Duration 

Ave. Daily 

# Trans 

Ave. 

Vol/Trans 

Ave. Price 

Duration 

Ave. Daily 

Volume 

(shares) 

ASND 1,030 45.55 0.09 333.39 5,723.20 1,497.70 1,083.55 8,431,497 

ORCL 612 47.24 0.09 304.34 3,104.27 1,335.79 1,724.23 4,131,497 

NSCP 734 40.86 0.13 97.86 1,197.15 1,288.94 1,494.21 1,551,877 

SBUX 395 39.97 0.13 82.49 543.06 1,304.65 2,313.90 686,025 

DURA 403 39.14 0.22 45.72 307.09 1,687.19 2,446.58 577,185 

          

CLST 519 35.88 0.27 27.62 238.91 1,626.74 1,866.45 435,837 

ADTN 664 35.92 0.22 34.17 378.15 1,173.34 1,423.13 439,343 

IRIDF 479 34.51 0.31 53.63 428.15 749.06 1,745.48 334,698 

PSUN 463 36.72 0.46 14.34 110.66 1,737.35 1,807.68 225,440 

SEBL 698 36.19 0.34 15.81 183.92 1,250.37 1,535.55 246,112 

          

SDTI 487 38.20 0.27 18.44 149.67 1,344.45 1,952.97 223,817 

APOL 463 37.31 0.29 17.18 132.57 1,428.63 1,965.89 211,208 

LHSPF 311 36.16 0.31 25.31 131.19 1,285.17 2,031.17 173,928 

WIND 610 41.93 0.35 15.84 161.04 1,322.36 1,704.94 220,510 

CBSS 86 36.36 0.28 18.49 26.50 1,500.64 3,886.57 41,073 
 

 

 

This table provides summary statistics for stocks in three groups classified based on trading volume.  

The first group is the high-volume or heavily traded group and the third group is the low-volume or 

thinly traded group.  The medium volume group is in between these two groups.  The first group can 

be classified as the frequently traded group, if DURA is excluded.  The second group can be classified 

as the medium-frequency group if PSUN is excluded while the third group can be classified as the 

infrequently traded group.  The data are “thinned” by ignoring price movements less than two ticks 

($0.25).  Duration is the time interval between two trades.  The duration calculated after thinning is 

called price duration.  Price duration is measured in seconds.  Volume is measured in number of 

shares.  The number of durations is the number of observations for the duration variable; average price 

and spread are expressed in dollars; average #Trans/Duration is the number of transaction per 

duration; average daily #Trans is the mean transaction number per day; and average Vol./Trans is the 

average volume (in shares), or trade size per transaction. 



 

 

 

41 

 

Table 1B 

Company Names 
 

 

 

High-

Volume 

Group 

 

ASND ASCEND COMMUNICATIONS 

ORCL ORACLE CORP 

NSCP NETSCAPE COMMUNICATIONS CORP 

SBUX STARBUCKS CORP 

DURA DURA PHARMACEUTICALS, INC. 

   

Medium- 

Volume 

Group 

CLST CELLSTAR CORP 

ADTN ADTRAN INC 

IRIDF IRIDIUM LLC 

PSUN PAC SUNWEAR CA 

SEBL SIEBLE SYSTEMS 

   

Low-Volume 

Group 

SDTI SECURITY DYNAMICS 

APOL APOLLO GROUP 

LHSPF LERNOUT & HAUSPIE SPEECH PRODUCTS 

WIND WIND RIVER SYSTEMS 

CBSS COMPASS BNCSHRS 
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Table 2 

Estimates of the EACD(1,1) model for unadjusted price duration 
 

Stock       

ASND 8.34(4.01) 0.26(5.13) 0.41(4.08) 

ORCL 7.63(3.54) 0.31(4.81) 0.46(4.64) 

NSCP 6.66(3.09) 0.20(4.29) 0.54(4.95) 

SBUX 7.45(1.79) -0.03(-0.93) 0.83(8.72) 

DURA 0.70(1.09) 0.01(0.84) 0.97(37.07) 

Average  0.15 0.64 

Average (without DURA)  0.19 0.56 

    

CLST 1.97(3.39) 0.37(5.64) 0.63(12.68) 

ADTN 8.34(4.01) 0.26(5.13) 0.41(4.08) 

IRIDF 3.10(4.44) 0.25(5.26) 0.67(15.65) 

PSUN 6.27(3.48) 0.16(3.89) 0.64(8.16) 

SEBL 3.80(2.31) 0.06(2.82) 0.79(11.11) 

Average  0.22 0.63 

Average (without PSUN)  0.24 0.63 

    

SDTI 14.78(1.38) 0.02(0.84) 0.51(1.52) 

APOL   5.56(2.30) 0.07(2.28) 0.76(8.32) 

LHSPF   2.63(2.95)  0.59(5.41) 0.46(7.66) 

WIND   7.81(5.82) 0.45(6.69) 0.35(5.52) 

CBSS -- -- -- 

Average  0.28 0.52 

 
This table reports the parameter estimates of the EACD(1,1) model and the t-values (in parentheses) for three 

stock groups described in Table 1.  The EACD(1,1) model for duration is 

iiix   

11   iii x   

where ix  is the duration and i  is the conditional mean of the duration between two arrival times ti  and ti-1. The 

price duration was divided by 60 in estimation. The parameter estimates for CBSS did not converge.  Average 

parameter estimates are mean estimates for each group.  Averages without DURA or PSUN are mean parameter 

estimates excluding each of these two stocks which are removed because their trading frequencies are too low to 

be qualified in the high and medium frequency groups.  The mean estimates excluding these stocks represent the 

group average using the measure of trade frequency to define the activeness of stocks. 
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Table 3 

Estimates of the WACD(1,1) model for unadjusted price duration 
 

Stock         

ASND 7.07(5.19) 0.40(7.58) 0.23(2.34) 0.91(47.99) 

ORCL 7.71(3.36) 0.30(3.88) 0.45(4.29) 0.94(33.37) 

NSCP 0.67(1.66) 0.06(3.28) 0.91(30.81) 0.81(36.10) 

SBUX 7.84(1.57) -0.03(-0.89) 0.83(7.49) 0.78(25.51) 

DURA 0.53(0.64) 0.01(0.47) 0.98(26.01) 0.71(23.58) 

Average  0.15 0.68  

Average (without DURA)  0.18 0.61  

     

CLST 1.79(2.51) 0.40(4.33) 0.61(9.13) 0.68(35.59) 

ADTN 8.62(2.72) 0.22(3.33) 0.42(2.81) 0.72(33.64) 

IRIDF 2.96(3.05) 0.29(4.02) 0.64(10.65) 0.68(31.04) 

PSUN 5.91(2.36) 0.21(2.71) 0.61(5.16) 0.57(29.19) 

SEBL 4.82(1.93) 0.12(2.38) 0.70(5.70) 0.61(37.17) 

Average  0.25 0.60  

Average (without PSUN)  0.26 0.59  

     

SDTI 16.46(1.09) 0.04(0.75) 0.45(0.96) 0.68(29.54) 

APOL 5.11(1.60) 0.07(1.58) 0.78(6.66) 0.65(29.48) 

LHSPF 2.53(2.30) 0.61(4.49) 0.44(5.82) 0.77(25.05) 

WIND 7.80(4.19) 0.46(4.86) 0.33(3.83) 0.67(34.95) 

CBSS 41.10(1.85) -0.24(-4.09) 0.60(2.13) 0.75(11.52) 

Average  0.19 0.52  
 

This table reports the parameter estimates of the WACD(1,1) model and the t-values (in parentheses) for three 

stock groups described in Table 1.   is the parameter of the Weibull distribution. Estimation is based on the  

likelihood function in equation (6). The WACD(1,1) model for duration is 

iiix   

11   iii x   

where ix  is the duration and i  is the conditional mean of the duration between two arrival times ti  and ti-1. The 

price duration was divided by 60 in estimation.  Average parameter estimates are mean estimates for each group.  

Averages without DURA or PSUN are mean parameter estimates excluding each of these two stocks which are 

removed because their trading frequencies are too low to be qualified in the high and medium frequency groups.  

The mean estimates excluding these stocks represent the group average using the measure of trade frequency to 

define the activeness of stocks. 
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Table 4 

Estimates of the WACD(1,1) model for unadjusted price duration 

with number of transactions and trade size 
 

      

Stock         #Trans Ave Vol/ 

#Trans 

ASND 9.18  (5.21) 0.39  (6.67) 0.21 (2.43) 0.91  47.28) 0.02  (0.13) -1.11(-1.81) 

ORCL 5.74  (8.08) 0.32 (2.51) 0.44  (4.31) 0.94 (33.97) -0.01 (-0.01)  1.55 (1.51) 

NSCP 15.07(4.45) 0.39  (3.94) 0.35  (2.91) 0.81 (36.97) -4.44 (-2.91) -2.81 (-1.58) 

SUBX 15.46(2.73) -0.07(-1.17) 0.77  (7.87) 0.78 (28.33) 1.91  (0.75) -4.37 (-2.26) 

DURA 11.44(1.37) 0.05  (0.96) 0.74  (3.91) 0.71 (28.00) -5.55 (-1.08) -0.48 (-0.31) 

Average 11.38 0.22 0.50 0.83 -1.61 -1.44 

Average 

(without 

DURA) 

11.36 0.26 0.44 0.86 -0.63 -1.69 

       

CLST 4.90  (3.33) 0.51  (4.60) 0.57  (8.43) 0.68 (31.45) -10.33 (-1.87) -1.07 (-1.74) 

ADTN 4.40  (2.38) 0.03  (0.89) 0.89 (15.93) 0.73 (35.15) -4.52 (-3.55) -0.91 (-0.95) 

IRIDF 2.16  (1.19) 0.35  (3.62) 0.65  (9.94) 0.68 (28.09) -4.58 (-1.72) 2.00  (0.79) 

PSUN 5.11  (1.69) 0.24  (2.61) 0.56  (4.50) 0.57 (28.79) -7.16 (-0.64) 1.48  (1.10) 

SEBL 3.73  (1.24) 0.16  (2.57) 0.64  (4.27) 0.62 (36.75) -11.11 (-1.47) 2.54  (1.95) 

Average  4.06 0.26 0.66 0.66 -7.54 0.81 

Average 

(without 

PSUN) 

3.80 0.26 0.69 0.68 -7.64 0.64 

       

SDTI 6.72(9.89) 0.05  (0.90) 0.77 (7.97) 0.68 (30.02) -21.11 (-1.50) 2.25  (1.24) 

APOL 2.47  (0.99) 0.08  (1.83) 0.80 (10.19) 0.65 (29.00) -18.23 (-1.30) 3.35  (1.86) 

LHSPF -2.07(-2.28) 0.72  (5.11) 0.44  (6.26) 0.79 (25.52) -12.67 (-2.22) 4.72  (3.48) 

WIND 6.76  (2.79) 0.55  (4.32) 0.33  (3.88) 0.67 (33.46) -17.40 (-1.30) 1.38  (1.28) 

CBSS 41.40(5.23) -0.27(-4.15) 0.61  (6.19) 0.78 (11.39) -15.54 (-0.76) 4.82  (1.17) 

Average 21.06 0.23 0.59 0.714 -16.99 3.30 

 

This table reports the parameter estimates of the WACD(1,1) model with the number of transaction and trade 

size, and the t-values (in parentheses) for three stock groups described in Table 1.    is the parameter of the 

Weibull distribution. Estimation is based on the model 

 

TransVolumeTransx iii /#11     

 

where ix  is the duration and i  is the conditional mean of the duration between two arrival times ti and ti-1; 

#Trans is the number of transactions per duration and Volume/Trans is trade size or average volume per 

transaction. The unadjusted duration was divided by 60, the number of transactions was divided by 100, and the 

average volume over number of transactions was divided by 1000.  Average parameter estimates are mean 

estimates for each group.  Averages without DURA or PSUN are mean parameter estimates excluding each of 

these two stocks which are removed because their trading frequencies are too low to be qualified in the high and 

medium frequency groups.  The mean estimates excluding these stocks represent the group average using the 

measure of trade frequency to define the activeness of stocks. 
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Table 5 

Estimates of the WACD(1,1) model for unadjusted price duration with 

spread, number of transactions and average trade size 
 

Stock         Spread #Trans Ave Vol/ 
#Trans 

ASND 3.80 
(1.72) 

0.02 
(0.86) 

0.91 
(17.28) 

0.73 
(34.35) 

0.01 
(0.40) 

-4.22 
(-3.03) 

-0.84 
(-0.93) 

ORCL 9.52 
(2.81) 

0.31 
(2.96) 

0.48 
(5.12) 

0.94 
(34.42) 

-0.42 
(-3.28) 

-0.10 
(-0.17) 

0.98 
(0.52) 

NSCP 16.99 
(6.67) 

0.34 
(4.22) 

0.44 
(4.96) 

0.81 
(37.93) 

-0.38 
(-6.85) 

-4.26 
(-4.38) 

-1.31 
(-0.96) 

SUBX 50.60 
(4.43) 

0.33 
(2.98) 

-0.40 
(-2.67) 

0.79 
(26.65) 

0.69 
(1.43) 

-13.09 
(-2.09) 

-5.52 
(-1.52) 

DURA -- -- -- -- -- -- -- 

Average 21.91 0.34 0.18 0.87 -0.07 -4.37 -1.71 

        

CLST 7.91 
(3.27) 

0.54 
(4.88) 

0.55 
(8.23) 

0.68 
(31.91) 

-0.12 
(-2.23) 

-9.94 
(-2.16) 

-0.98 
(-0.76) 

ADTN 3.80 
(1.72) 

0.02 
(0.86) 

0.91 
(17.28) 

0.73 
(34.35) 

0.01 
(0.40) 

-4.22 
(-3.03) 

-0.84 
(-0.93) 

IRIDF 4.13 
(1.40) 

0.34 
(3.83) 

0.66 
(10.58) 

0.68 
(33.69) 

-0.05 
(-0.92) 

-4.49 
(-1.87) 

1.26 
(0.52) 

PSUN 3.73 
(1.06) 

0.24 
(2.52) 

0.55 
(4.77) 

0.57 
(28.01) 

0.04 
(0.56) 

-8.36 
(-0.67) 

1.51 
(1.30) 

SEBL 6.01 
(1.61) 

0.17 
(2.77) 

0.62 
(4.72) 

0.62 
(36.87) 

-0.05 
(-0.80) 

-13.14 
(-2.01) 

2.64 
(2.16) 

Average 5.12 0.26 0.66 0.66 -0.03 -8.03 0.72 

Average (without 

PSUN) 

5.46 0.27 0.69 0.68 -0.05 -7.95 0.52 

        

SDTI 27.91 
(1.80) 

0.10 
(1.28) 

0.29 
(0.66) 

0.68 
(30.91) 

-0.13 
(-1.31) 

-25.21 
(-1.49) 

0.06 
(0.05) 

APOL 10.99 
(1.10) 

0.10 
(1.68) 

0.72 
(3.73) 

0.65 
(29.09) 

-0.23 
(-1.49) 

-20.44 
(-1.14) 

3.49 
(1.53) 

LHSPF 2.62 
(0.62) 

0.53 
(1.84) 

0.52 
(2.91) 

0.80 
(25.34) 

-0.09 
(-1.56) 

-16.63 
(-4.12) 

4.21 
(1.84) 

WIND 13.07 
(3.82) 

0.54 
(4.49) 

0.34 
(4.23) 

0.68 
(32.45) 

-0.15 
(-2.50) 

-21.71 
(-1.66) 

1.15 
(1.17) 

CBSS 25.91 
(1.56) 

-0.24 
(-5.18) 

0.21 
(1.86) 

0.81 
(11.98) 

-1.24 
(-2.24) 

18.01 
(0.41) 

4.59 
(0.56) 

Average 16.10 0.21 0.42 0.72 -0.37 -13.20 2.70 

 

This table reports the parameter estimates of the WACD(1,1) model with spread, the number of transactions, and trade 

size, and the t-values (in parentheses) for three stock groups described in Table 1.   is the parameter of the Weibull 

distribution. Estimation is based on the model 

TransVolumeTransSpreadx iii /#11     

Spread is the percentage bid-ask spread and the remaining variables are as defined in Table 4. The unadjusted duration 

was divided by 60, the number of transactions was divided by 100, the average volume over number of transactions 

was divided by 1000 and the spread was multiplied by 100. The estimates for DURA did not converge. Average 

parameter estimates are mean estimates for each group.  Averages without DURA or PSUN are mean parameter 

estimates excluding each of these two stocks which are removed because their trading frequencies are too low to be 

qualified in the high and medium frequency groups.  The mean estimates excluding these stocks represent the group 

average using the measure of trade frequency to define the activeness of stocks. 
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Table 6 

Estimates of the WACD(1,1) model for adjusted price duration 
 

Stock         

ASND 7.35(2.21) 0.15(4.25) 0.78(12.43) 1.05(41.77) 

ORCL 7.40(2.64) 0.13(4.73) 0.80(20.90) 1.16(32.20) 

NSCP 3.70(1.98) 0.11(3.66) 0.85(21.34) 0.96(35.32) 

SUBX 31.91(1.75) 0.12(2.00) 0.56(2.72) 1.02(25.99) 

DURA 7.51(0.92) 0.05(1.49) 0.87(8.11) 0.82(23.13) 

Average  0.11 0.77  

Average 

(without DURA) 

 
0.13 0.75 

 

     

CLST 6.09(2.19) 0.31(4.16) 0.66(8.83) 0.81(28.70) 

ADTN 16.17(2.41) 0.12(3.17) 0.72(8.21) 0.83(35.44) 

IRIDF 11.12(3.04) 0.22(3.91) 0.68(11.56) 0.84(31.13) 

PSUN 31.99(2.21) 0.22(2.73) 0.48(2.78) 0.66(27.75) 

SEBL 12.63(2.62) 0.12(3.57) 0.76(12.56) 0.71(33.31) 

Average  0.20 0.66  

Average 

(without DURA) 

 
0.19 0.71 

 

     

SDTI 15.30(1.22) 0.06(1.55) 0.79(5.72) 0.76(27.21) 

APOL 16.15(0.93) 0.02(0.61) 0.82(4.52) 0.74(26.60) 

LHSPF 7.19(2.38) 0.44(4.47) 0.54(7.16) 0.89(23.76) 

WIND 20.99(2.75) 0.33(4.30) 0.49(4.35) 0.75(32.29) 

CBSS 13.50(1.14) 0.14(1.13) 0.73(3.54) 1.07(12.58) 

Average  0.20 0.67  
 

 

This table reports the parameter estimates of the WACD(1,1) model, and the t-value (in parentheses) 

for three stock groups described in Table 1.   is the parameter of the Weibull distribution. Estimation 

is based on the likelihood function in equation (6). The WACD(1,1) model for duration is 

iiix   

11   iii x   

where ix  is the duration and i  is the conditional mean of the duration between two arrival times ti  

and ti-1. The adjusted price duration was multiplied by 100 in estimation. Average parameter estimates 

are mean estimates for each group.  Averages without DURA or PSUN are mean parameter estimates 

excluding each of these two stocks which are removed because their trading frequencies are too low 

to be qualified in the high and medium frequency groups.  The mean estimates excluding these stocks 

represent the group average using the measure of trade frequency to define the activeness of stocks. 
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Table 7 

Estimates of the WACD(1,1) model for adjusted price duration with 

number of transactions and average volume/number of transactions 
 

Stock         #Trans Ave Vol/ 

#Trans 

ASND 10.50 
(4.98) 

0.19  
(1.78) 

0.74  
(24.79) 

1.05  
(34.56) 

-0.01 
(-1.36) 

-0.68 
(-1.96) 

ORCL 3.18  
(1.04) 

0.19 
(4.18) 

0.73  
(11.19) 

1.16 
(30.43) 

-0.01 
(-1.56) 

6.35  
(1.21) 

NSCP 5.45  
(4.25) 

0.13   
(3.22) 

0.84  
(15.12) 

0.96  
(34.41) 

-0.05 
(-2.08) 

1.18  
(0.61) 

SBUX 62.96  
(3.04) 

0.19   
(2.56) 

0.44  
(2.33) 

1.03  
(24.32) 

-0.16 
(-2.62) 

-9.69 
(-1.61) 

DURA 28.98  
(1.97) 

0.12  
(2.39) 

0.71  
(5.47) 

0.83  
(22.29) 

-0.20 
(-1.73) 

-1.93 
(-0.54) 

Average 22.21 0.16 0.69 1.01 -0.09 -0.95 

Average (without DURA) 20.52 0.18 0.69 1.05 -0.06 -0.71 

       

CLST 15.35  
(5.71) 

0.37  
(5.07) 

0.72  
(12.49) 

0.83  
(30.69) 

-0.66 
(-6.03) 

-1.41 
(-1.68) 

ADTN 21.08  
(4.98) 

0.04   
(1.78) 

0.87  
(24.79) 

0.85  
(34.56) 

-0.23 
(-4.46) 

-4.39 
(-1.96) 

IRIDF 9.55   
(1.45) 

0.23   
(4.79) 

0.69  
(13.43) 

0.84  
(28.68) 

-0.05 
(-1.05) 

2.98  
(0.42) 

PSUN 31.50  
(2.26) 

0.29   
(3.04) 

0.41   
(13.00) 

0.66  
(27.35) 

-0.68 
(-1.73) 

6.68  
(1.32) 

SEBL 11.23  
(8.85) 

0.13   
(3.23) 

0.74  
(14.11) 

0.72  
(32.34) 

-0.11 
(-0.58) 

3.29  
(1.14) 

Average 17.74 0.21 0.69 0.78 -0.35 1.43 

Average (without PSUN) 14.30 0.19 0.76 0.81 -0.26 0.12 

SDTI 60.27  
(2.16) 

0.15   
(2.47) 

0.44  
(1.84) 

0.77  
(28.10) 

-0.97 
(-4.76) 

-0.93 
(-0.14) 

APOL 9.92  
(48.06) 

0.03   
(1.04) 

0.88  
(13.67) 

0.74  
(25.79) 

-0.29 
(-0.95) 

2.79  
(0.76) 

LHSPF -0.02 
(-0.03) 

0.43   
(4.69) 

0.56  
(8.37) 

0.89  
(24.70) 

-0.17 
(-1.85) 

8.00  
(3.06) 

WIND 20.89  
(2.46) 

0.39   
(3.84) 

0.49  
(4.39) 

0.76  
(31.52) 

-0.58 
(-1.67) 

2.55  
(0.88) 

CBSS 6.45  
(129.69) 

0.13   
(1.71) 

0.85  
(10.55) 

1.09  
(22.61) 

-0.52 
(-1.37) 

3.66  
(47.63) 

Average 19.50 0.23 0.64 0.85 -0.51 3.21 

 

The table reports the parameter estimates of the WACD(1,1) model with the number of transactions 

and average volume,  and the t-value (in parentheses) for three stock groups described in Table 1.   

is the parameter of the Weibull distribution. Estimation is based on the model 

TransVolumeTransx iii /#11     

where the variables are as defined in Table 4. The adjusted duration was multiplied by 100, and the 

average volume over number of transactions was divided by 1000.  Average parameter estimates are 

mean estimates for each group.  Averages without DURA or PSUN are mean parameter estimates 

excluding each of these two stocks which are removed because their trading frequencies are too low 

to be qualified in the high and medium frequency groups.  The mean estimates excluding these stocks 

represent the group average using the measure of trade frequency to define the activeness of stocks. 
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Table 8 

Estimates of the WACD(1,1) model for adjusted price duration with 

spread, number of transactions and average trade size 
 

Stock         Spread #Trans Ave Vol/ 
#Trans 

ASND 15.95 
(3.87) 

0.21 
(5.23) 

0.72 
(13.08) 

1.05 
(43.52) 

-0.43 
(-1.72) 

-0.01 
(-2.09) 

-0.75 
(-0.98) 

ORCL 10.01 
(2.40) 

0.16 
(4.44) 

0.79 
(18.94) 

1.16 
(33.77) 

-0.76 
(-3.19) 

-0.01 
(-2.15) 

4.59 
(1.80) 

NSCP 8.43 
(1.09) 

0.14 
(3.30) 

0.83 
(13.36) 

0.96 
(35.18) 

-0.16 
(-1.06) 

-0.05 
(-3.06) 

1.65 
(0.50) 

SBUX 60.68 
(2.91) 

0.20 
(2.66) 

0.41 
(2.32) 

1.03 
(25.76) 

0.42 
(0.59) 

-0.17 
(-2.42) 

-10.38 
(-1.71) 

DURA 0.67 
(0.12) 

0.10 
(1.08) 

0.79 
(5.01) 

0.83 
(20.78) 

1.05 
(1.67) 

-0.16 
(-1.17) 

-2.83 
(-0.79) 

Average 19.15 0.16 0.71 1.01 0.02 -0.08 -1.54 

Average 

(without DURA) 
23.77 0.18 0.69 1.05 -0.23 -0.06 -1.22 

        

CLST 22.45 
(3.68) 

0.34 
(5.26) 

0.74 
(13.33) 

0.83 
(31.11) 

-0.22 
(-1.36) 

-0.63 
(-7.80) 

-2.57 
(-2.23) 

ADTN 20.15 
(2.61) 

0.04 
(1.33) 

0.87 
(15.51) 

0.85 
(35.85) 

0.04 
(0.27) 

-0.22 
(-3.33) 

-4.49 
(-1.35) 

IRIDF 12.40 
(1.26) 

0.24 
(3.37) 

0.68 
(8.28) 

0.84 
(28.61) 

-0.07 
(-0.43) 

-0.06 
(-0.92) 

2.74 
(0.40) 

PSUN 19.27 
(1.21) 

0.30 
(3.15) 

0.41 
(2.97) 

0.67 
(27.39) 

0.27 
(1.22) 

-0.75 
(-1.97) 

6.29 
(1.34) 

SEBL 14.51 
(1.22) 

0.13 
(3.01) 

0.74 
(9.12) 

0.72 
(33.11) 

-0.09 
(-0.40) 

-0.14 
(-0.74) 

3.55 
(0.75) 

Average 17.76 0.21 0.69 0.78 -0.01 -0.36 1.10 

Average (without PSUN) 17.38 0.19 0.76 0.81 -0.09 -0.26 -0.19 

        

SDTI 64.12 
(2.46) 

0.14 
(2.80) 

0.47 
(2.06) 

0.77 
(26.75) 

-0.23 
(-0.74) 

-0.93 
(-4.90) 

-1.07 
(-0.19) 

APOL 111.88 
(2.84) 

0.01 
(0.19) 

0.25 
(0.89) 

0.75 
(27.58) 

-1.41 
(-3.93) 

-0.27 
(-0.55) 

5.93  
(0.84) 

LHSPF 14.30 
(1.83) 

0.39 
(4.75) 

0.59 
(8.62) 

0.91 
(22.70) 

-0.35 
(-3.17) 

-0.34 
(-2.46) 

8.28 
(2.13) 

WIND 35.76 
(3.22) 

0.41 
(4.48) 

0.48 
(4.68) 

0.76 
(31.51) 

-0.33 
(-1.82) 

-0.76 
(-2.28) 

1.80 
(0.59) 

CBSS 57.54 
(3.92) 

0.62 
(5.23) 

0.20 
(1.66) 

1.12 
(11.82) 

-1.53 
(-5.44) 

-0.44 
(-0.89) 

16.36 
(2.19) 

Average 56.72 0.31 0.40 0.86 -0.77 -0.55 6.26 

 

This table reports the parameter estimates of the WACD(1,1) model with spreads, the number of transactions, and 

trade size for three stock groups described in Table 1. t-values are in parentheses.   is the parameter of the Weibull 

distribution. Estimation is based on the model 

TransVolumeTransSpreadx iii /#11     

where the variables are as defined in Table 5. The adjusted duration was multiplied by 100, the average volume 

over number of transactions was divided by 1000, and the spread was multiplied by 100.  Average parameter 

estimates are mean estimates for each group.  Averages without DURA or PSUN are mean parameter estimates 

excluding each of these two stocks which are removed because their trading frequencies are too low to be 

qualified in the high and medium frequency groups.  The mean estimates excluding these stocks represent the 

group average using the measure of trade frequency to define the activeness of stocks. 
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Table 9 

 

Cumulative impulse response function of the microstructure variables 

(number of transactions, and average volume/number of transactions) for 

adjusted duration 
 

 

Stock 

 

First row:   , ,  ,  +  , and  , . 

Second and third row:  cumulative impulse response function of  # trans and volume/trans 

ASND 

 

10.50   0.19   0.74   0.93  -0.01  -0.68 

  -0.0   -0.0   -0.0   -0.0   -0.0   -0.1   -0.1   -0.1   -0.1   -0.1   -0.1 

  -0.7   -1.3   -1.9   -2.4   -3.0   -3.4   -3.9   -4.3   -4.7   -5.0   -9.7 

ORCL 3.18   0.19   0.73   0.92  -0.01   6.35 

  -0.0   -0.0   -0.0   -0.0   -0.0   -0.0   -0.1   -0.1   -0.1   -0.1   -0.1 

   6.3   12.2   17.6   22.5   27.1   31.2   35.1   38.6   41.9   44.9   79.4 

  

NSCP 5.45   0.13   0.84   0.97  -0.05   1.18 

  -0.1   -0.1   -0.1   -0.2   -0.2   -0.3   -0.3   -0.4   -0.4   -0.4   -1.7 

   1.2    2.3    3.4    4.5    5.6    6.6    7.6    8.5    9.4   10.3   39.3 

  

SBUX 62.96   0.19   0.44   0.63  -0.16  -9.69 

  -0.2   -0.3   -0.3   -0.4   -0.4   -0.4   -0.4   -0.4   -0.4   -0.4   -0.4 

  -9.7  -15.8  -19.6  -22.1  -23.6  -24.6  -25.2  -25.5  -25.8  -25.9  -26.2 

                 

DURA 28.98   0.12   0.71   0.83  -0.20  -1.93 

  -0.2   -0.4   -0.5   -0.6   -0.7   -0.8   -0.9   -0.9   -1.0   -1.0   -1.2 

  -1.9   -3.5   -4.9   -6.0   -6.9   -7.6   -8.3   -8.8   -9.2   -9.6  -11.4 

  

  

CLST 15.35   0.37   0.72   1.09  -0.66  -1.41    

   +   > 1 

ADTN 21.08   0.04   0.87   0.91  -0.23  -4.39 

  -0.2   -0.4   -0.6   -0.8   -1.0   -1.1   -1.2   -1.4   -1.5   -1.6   -2.6 

  -4.4   -8.4  -12.0  -15.3  -18.3  -21.1  -23.6  -25.8  -27.9  -29.8  -48.8 

   

IRIDF    9.55   0.23   0.69   0.92  -0.05   2.98 

  -0.1   -0.1   -0.1   -0.2   -0.2   -0.2   -0.3   -0.3   -0.3   -0.4   -0.6 

   3.0    5.7    8.2   10.6   12.7   14.7   16.5   18.1   19.7   21.1   37.3 

   

PSUN 31.50   0.29   0.41   0.70  -0.68   6.68 

  -0.7   -1.2   -1.5   -1.7   -1.9   -2.0   -2.1   -2.1   -2.2   -2.2   -2.3 

   6.7   11.4   14.6   16.9   18.5   19.6   20.4   21.0   21.4   21.6   22.3 

    

SEBL 11.23   0.13   0.74   0.87  -0.11   3.29 

  -0.1   -0.2   -0.3   -0.4   -0.4   -0.5   -0.5   -0.6   -0.6   -0.6   -0.8 

   3.3    6.2    8.6   10.8   12.7   14.3   15.8   17.0   18.1   19.0   25.3 
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Table 9 

Continued 
 

  

SDTI  60.27   0.15   0.44   0.59  -0.97  -0.93 

  -1.0   -1.5   -1.9   -2.1   -2.2   -2.3   -2.3   -2.3   -2.3   -2.4   -2.4 

  -0.9   -1.5   -1.8   -2.0   -2.1   -2.2   -2.2   -2.2   -2.2   -2.3   -2.3 

              

APOL   9.92   0.03   0.88   0.91  -0.29   2.79 

  -0.3   -0.6   -0.8   -1.0   -1.2   -1.4   -1.6   -1.7   -1.8   -2.0   -3.2 

   2.8    5.3    7.6    9.7   11.7   13.4   15.0   16.4   17.7   18.9   31.0 

     

LHSPF  -0.02   0.43   0.56   0.99  -0.17   8.00 

  -0.2   -0.3   -0.5   -0.7   -0.8   -1.0   -1.2   -1.3   -1.5   -1.6  -17.0 

   8.0   15.9   23.8   31.5   39.2   46.8   54.3   61.8   69.2   76.5  800.0 

    

WIND 20.89   0.39   0.49   0.88  -0.58   2.55 

  -0.6   -1.1   -1.5   -1.9   -2.3   -2.6   -2.9   -3.1   -3.3   -3.5   -4.8 

   2.5    4.8    6.8    8.5   10.0   11.4   12.6   13.6   14.5   15.3   21.2 

   

CBSS 6.45   0.13   0.85   0.98  -0.52   3.66 

  -0.5   -1.0   -1.5   -2.0   -2.5   -3.0   -3.4   -3.9   -4.3   -4.8  -26.0 

   3.7    7.2   10.8   14.2   17.6   20.9   24.1   27.3   30.4   33.5  183.0 

   

 

For each stock, the first row reports the estimates of the WACD parameters  , ,  ,  +  ,  , and  in 

Table 7.  The units used in this table follow from Table 7. The second row reports the k-cumulative impulse 

response function of one unit increase in #Trans (the number of transactions) for  k = 0, 1, ….., 9 lags later, and 

with the limiting value (when k is infinite) given as the last value. The value indicates the cumulative response in 

term of percentage change in average price duration. The third row reports the response functions corresponding 

to Volume/trans (or trade size). The value (times 0.001) indicates the cumulative response in term of percentage 

change in average price duration. The response function is not reported if  +   is negative or   1.  
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Figure 1 

Average Price Duration for A Typical Trading Day 

 

 

The time span from 9:45:00 to 16:00:00 in a trading day is divided into 25 intraday time intervals of 

15 minutes each. The average price duration within each interval is computed over the entire sample 

period. Plots of the average price duration (in seconds) over the 25 intervals for stocks ASND, SEBL 

and WIND are shown. 
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Figure 2 

One-Step-Ahead Forecast of Price Duration 

Figure 2. One-Step-Ahead Forecast of Price Duration 

One-step-ahead forecast of price duration for a selected day with more transactions for three selected stocks: ASND (July 

2), SEBL (July 18), and WIND (July 14). The graphs on the left show the forecast of adjusted durations using the 

WACD(1,1) model for adjusted durations in Table 6; it is then multiplied by the intraday periodic pattern to obtain the 

forecasts for unadjusted durations (graphs on the right).  The adjusted duration on the vertical axis in the left-side panel is 

expressed in terms of ratios (the series has a mean approximately equal to 1) and the unadjusted duration on the vertical 

axis of the right panel is expressed in seconds.  In all graphs, the horizontal axis indicates the sequence of transactions for 

each trading day.  The dashed line represents forecast values while the solid line represents actual values. 
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Figure 3 

Impulse Response for Adjusted Duration to Trade Innovations 
 

 

 

 

 

The vertical axis of the graphs indicates the response in terms of percentage change in average price 

duration, and the horizontal axis indicates the number of transactions (k = 0, 1, …, 99) taking place after 

one unit increase (innovation) in the variable #Trans. The graph on the top left-hand corner shows the k-

cumulative impulse response function for adjusted price duration after a trade innovation (i.e., a unit 

increase in #Trans, the number of transactions). These response functions are obtained based on the 

average WACD(1,1) and  estimates for each stock group of high, medium and low trading activities 

reported in Table 7. The bottom graphs are the impulse response function 
k . The graph on the lower 

right-hand side is the response function with the  value sets equal to –1 (standardized) for all three stock 

groups.  For illustration, in the lower left-hand graph, when there is a trade innovation, the effect of that 

trade on the adjusted duration will go down by 0.44% (0.13%) after k = 1 (10) transactions for the thinly 

traded group. 
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