2014

What You Can Do About the Negative Effects of Methane

JB Maza
Pepperdine University

Laurel Rodewald
Pepperdine University

Ashley Thurmond
Pepperdine University

Follow this and additional works at: https://digitalcommons.pepperdine.edu/sturesearch

Part of the *Biology Commons*

Recommended Citation
Maza, JB; Rodewald, Laurel; and Thurmond, Ashley, "What You Can Do About the Negative Effects of Methane" (2014). Pepperdine University, *Featured Research*. Paper 103.
https://digitalcommons.pepperdine.edu/sturesearch/103

This Research Poster is brought to you for free and open access by the Undergraduate Student Research at Pepperdine Digital Commons. It has been accepted for inclusion in Featured Research by an authorized administrator of Pepperdine Digital Commons. For more information, please contact Katrina.Gallardo@pepperdine.edu, anna.speth@pepperdine.edu.
What You Can Do About the Negative Effects of Methane

JB Maza, Laurel Rodewald, Ashley Thurmond
Pepperdine University 24255 Pacific Coast Hwy, Malibu, CA 90263

ABSTRACT

Our central objective was to investigate the apparent rise in methane emissions and whether or not they are having a negative effect on the environment. By themselves, methane emissions are natural and self-regulating (and thus do not cause damage to the atmosphere), but our thesis is that a build up of methane emissions as a result of increased human activity/negligence poses a threat to the environment, and needs to be addressed in the quest to live sustainably.

INTRODUCTION

- Methane has an indirect effect on climate through chemical feedbacks
- Natural processes in soil and chemical reactions in the atmosphere help remove CH$_4$ from the atmosphere.
- Given that gas is often found alongside petroleum, the production, refinement, transportation, and storage of crude oil is also a source of CH$_4$ emissions.
- More than 50% of present-day global methane emissions are anthropogenic; the largest contributors being fossil fuel production, ruminants, rice cultivation, and waste handling.
- Rising methane concentrations can cause increases in ozone and stratospheric water vapor concentrations.
- A molecule of methane is far more effective than a molecule of carbon dioxide in absorbing and radiating energy back to Earth.
- The estimated 1% annual increase in global methane is mainly attributed to human activities
- Methane concentrations have increased dramatically in the 20th century as a result of human activities, including fossil fuel use and agriculture.

REFERENCES

ACKNOWLEDGEMENTS

This research was funded by the Natural Science Division of Pepperdine University.