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In some modern venture valuation approaches, option pricing theory plays an important role. 

The aim of this paper is to present some tools and viewpoints which might be helpful for 

future investigations along this line. We model the value-dynamics tX of an imbedded 

underlying X  as a non-lognormally-distributed generalization of the geometric Brownian 

motion. In detail, tX  is supposed to be a solution of a stochastic differential equation of the 

form 

 

 

with non-constant volatility function )(t  and Brownian motion tW . For this, we discuss a 

certain decision problem concerning the size of the trend function b . Under some handy-to-

verify but far-reaching assumptions, we investigate the (average) reduction of decision risk 

that can be obtained by observing the sample path of X . Furthermore, we also show some 

connections with the valuation of call options on X .  

 

Introduction 

 It is well known that option models can be used in the framework of valuating 

ventures. For instance, Kogut (1991) considers joint ventures in terms of real options to 

expand in response to uncertain future technological and market developments. In such a 

context, the underlying is e.g. basically played by the equity value of one of the two partners. 

Along this line, further progress on joint venture options can be found in Chi and McGuire 

(1996), Folta (1998), and Chi (2000). Amongst other things, the latter also investigates the 

effects of the presence of options for the designing of the joint venture. For the use of option 

theory in connection with decisions to acquire additional equity in partner firms in research-

intensive industries, see also Folta and Miller (2002). The article of Miller and Folta (2002) 
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discusses a real call option approach to initial foothold investments made by firms entering 

new markets. 

 In a different framework, Hurry, Miller and Bowman (1992) work out the existence of 

an implicit or “shadow” option on new technology in Japanese venture capital investments in 

high-technology U.S. enterprises. Accordingly, the underlying is played by the value of a 

newly developed technology.  

 Keeley, Punjabi and Turki (1996) use multi-stage option pricing techniques in order to 

describe the value of early-stage ventures, which usually have high risk levels and involve 

sequential investment decisions. There, the role of the underlying is played by the value of 

the company in its early stages.   

 Finally, ordinary financial options are sometimes involved as “direct” assets of the 

venture, of course. 

 Usually, options are evaluated by (i) choosing an appropriate model for the evolution 

of the value of the underlying, and (ii) by applying the risk-neutral pricing approach and  

accordingly calculating the discounted expectations (with respect to the risk-neutral measure) 

of the payoff. Of course, the first step (i) is also helpful for other questions about ventures.  

 One popular line of underlying-models are the discrete-time binomial Cox-Ross-

Rubinstein approach (1979) and its continuous-time counterpart,
 
the geometric Brownian 

motion tX , which is the unique (strong) solution of the stochastic differential equation (SDE) 
 

                                            ,,0, TtdWXdtXcdX tttt                                         (1) 

                                          ,00  xX
 

 

with some constants RIc  and 0 , fixed final time horizon 0T , and Brownian motion  

W (see Samuelson (1965), Merton (1969), and Merton (1971)). In other words, tX  follows a 

diffusion process with linear trend (drift) function ycyb :)(
 
and constant volatility 0 . 

Accordingly, the corresponding risk-neutral value of a European call option on the 

underlying X  is given by the well-known Black-Scholes formula (1973) (see also Merton 

(1973)). 

 However, as it can be seen from the first few paragraphs above, the value of the 

underlying in ventures-concerning options is typically subject to a non-constant-volatility 

dynamics. Hence, one reasonable step of generalization is to model the evolution tX  of the 

underlying-value by the generalized geometric Brownian motion described by the SDE   
 

                                            ,,0, TtdWXdtXcdX ttttt                                       (2) 

                                          ,00  xX
 

 

with some deterministic nonnegative volatility function )(: tt   . For example, t might be 

chosen as increasing during a first time-period and decreasing afterwards. The corresponding 

probability law of (2) will be denoted by 
c

x
P

),0(
; with respect to this law, tX  is log-normally 

distributed.   

 Since ventures often take place in a very “trendy” environment, it also makes sense to 

use underlying-value evolution models of the form  
 

                                            ,,0,)( TtdWXdtXbdX ttttt                                  (3) 

                                          .00  xX
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In other words, tX  is a diffusion process with trend function )(yb  and non-constant volatility 

function t . For instance, one could take )(yb  as strongly increasing in order to mimic a 

current boom. The corresponding probability law of (3) will be denoted by ),0( xQ ; with 

respect to this law, tX  is now typically non-lognormally distributed. As a technical side 

remark, notice that we have fixed tX  and consequently we identify the models (2) and (3) by 

their respective solution laws; for the questions addressed in this paper, this can always be 

achieved by working on the probability space of sample paths (strictly speaking, one would 

also have to use different Brownian motions).  

 Certainly, it makes sense to investigate questions in the vicinity of the two following 

topics: to select a model for the underlying-value dynamics, and to give the adequate option 

price formula.   

 The paper is organized as follows: as a preliminary, in Section I we describe a 

statistical procedure for deciding (testing) between the “usual-trend-model” (2) and the 

“unusual-trend-model” (3). In Section II we present handy-to-verify but yet far-reaching 

assumptions on the trend function b and the volatility function t , such that all the assertions 

work out properly; these assumptions can be considered as a verification-toolbox for the 

financial engineer when designing a venture (allowing for a wide variety of different 

underlyings). With this in hand, as a follow-up of Section I we give some estimates upon the 

there-involved decision risk reduction over time. The results of Section II can be used in 

order to derive the call option price formula for the model (3); this will be shown in Section 

III. 

 

I. A Model Decision Procedure 

 For this section, let us fix the trend constant RIc , the trend function b , the volatility 

function t , and the starting underlying-value 0x . 

 Assume that you don't know whether the time-evolution of the value of the 

underlying X  (or a closely related object) is better described by the model (3) with trend 

function )(yb  or by the model (2) with the linear trend function ycyb :)(
~

. Accordingly, 

suppose that you want to decide, in an optimal way,  which degree of evidence   you should 

attribute (according to a pregiven loss function L ) to the “event” that X  has trend function 

b . Note that the volatility function is not object of the decision.  

 As one (Bayesian) way to achieve this goal, you can choose a loss function ),( L  

defined on ]1,0[}1,0{  ; this represents the loss/error which arises when the (unknown) 

parameter is of value   and the actually taken decision is  . Furthermore, according to your 

beliefs (or experiments) prior to time 0 , you fix a prior (binomial) probability [1,0]p  for 

the event 1 , which is associated with the general-trend-bearing law ),0( xQ . Also, you 

attach the prior (binomial) probability p1  to the event 0 , which is associated with the 

linear-trend-bearing 
c

x
P

),0(
. It is assumed that the prior probability p  should not depend on 

x . 

 The risk (or uncertainty),  prior to time 0 , from the optimal decision about the degree 

of evidence   concerning the decision parameter  ,  is defined as 
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this can be interpreted as a minimal prior expected loss. 

 In order to reduce the decision risk, imagine that you plan to observe a sample path of 

tX  in the time interval  T,0 . The corresponding risk (or uncertainty), posterior to the 

observation of X , from the optimal decision about the degree of evidence   concerning the 

parameter  , is given by 

 

with posterior probabilities   ,
)1(

:
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which satisfies 1][
,0),0(


c

T
c

x
ZEP  by the well-known Girsanov theorem (1960). Here, 

c
x

EP
),0(
 denotes the expectation with respect to the law 

c
x

P
),0(
. To justify (4), in the usual 

way of Bayesian decision theory we use the concept of decision rules D , which in our 

context are functions defined on the space of all possible sample paths - restricted to the time 

interval  T,0  - of the process X ; here,  1,0)|(
],0[


T
XD  gives the decision (upon  1,0 ) 

to be taken when the actually observed sample path of X in the time interval  T,0  is given 

by 
],0[

|
T

X . The corresponding average loss (called frequentist risk) is given by  

 

))]|(,([:),(
],0[ T

XDLEDFR    

 

with 
c

x
EPE

),0(0 :  and ),0(1: xEQE  . The integrated risk  

 

  ),0()1(),1(:),(:),( DFRpDFRpDFREDpIR p    
  

describes the frequentist risk averaged over the values of   according to their prior 

distribution. Any admissible decision rule *D  which minimizes this integrated risk ),( DpIR  

is called a Bayesian decision rule; the corresponding minimal value ),( *DpIR  (which is 

called Bayes risk) is equal to the term  c
xxL PQpBR
),0(),0( ,|||  given in (4) above. Indeed, 

for any prior probability p and any decision rule D one can calculate  

 

 

    )4(,)1()(:,|||
),0(),0(),0(),0(

c
xxpostL

c
xxL dPpdQppBRPQpBR  
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where the inequality above becomes an equality if one chooses D  to be the Bayesian 

decision rule 

 

 
 .),1(),0()1(minarg:)|(
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Depending on the outcome of the sample path (which governs postp ), one decides 

accordingly. 

 Having just finished the verification of (4), let us proceed with the introduction of the 

quantity 

 

    ,0,|||)(:,,
),0(),0(),0(),0( 

c
xxLL

c
xxL PQpBRpBRPQpBR  

 

which represents the reduction of the decision risk about the degree of evidence   

concerning the parameter  , that can be attained by observing the sample path of X  in the 

time interval  T,0 . 

 One reasonable question in this context, which can be linked with the derivation of 

option pricing results (see Section III below) is the following:  how much is the (average) 

reduction of the decision risk which is contained in the above-mentioned Bayesian decision 

problem? Clearly, the answer to this question depends essentially on the choice of the loss 

function L ; some corresponding results for two different kind of loss functions will be 

presented in the next Section II.  

 Of course, the method described in the current Section I works analogously for 

subperiods  1, ii tt  instead of the overall period   T,0 , with Tttt n  ...0 10 . 

This can be used to build up an updating (sequential) decision procedure, by choosing the 

posterior probability obtained at the end of the period  1, ii tt  as the prior probability at the 

beginning of the subsequent period  21,  ii tt , and so on. Such a multi-stage approach fits 

e.g. very well to the above-mentioned framework used in Keeley, Punjabi and Turki (1996). 

))]|(,0([)1())]|(,1([),(
],0[],0[ ),0(),0( TT

XDLEPpXDLEQpDpIR
c

xx 
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 Also, in the case that one is only interested in deciding between the two models (2) 

and (3), one can for instance stop the sample-path-observation at the first time T  (if it 

exists) at which the “uncertainty” (in the general sense of DeGroot (1962)) ))(( postL pBR  

becomes less or equal than a pregiven threshold  , where )(postp  is defined in the same 

way as postp , with the only difference that T  is replaced by  .  

 Let us finally comment that, in principal, one can run everything in this Section I 

analogously for discrete-time (binomial) approximations of the two models (2) and (3). 

 

II. Decision Risk Reductions 

 In order to study questions about the size of the (average) reduction of the decision 

risk, we use the following handy-to-verify but yet far-reaching assumptions on the trend 

function b  and the volatility function t  (see Stummer (2001a)): 

 

Assumption II.1  The volatility function t  satisfies the two conditions  

                                                            
T

v dv
0

2                                                            (6) 

and  
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The trend function b  satisfies the condition 
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 As soon as e.g. the venture design process has indicated an underlying-value 

dynamics with a certain possible pair of trend  and volatility function, one can try to verify 

the three conditions in Assumption II.1 in order to get automatically the decision risk 

reduction and option pricing results below.  

 In Stummer (2001a), it is shown that Assumption II.1 guarantees the existence of a 

(weak) solution 0tX  of the SDE (3). In that article, one can also find some examples 

which demonstrate in the extreme the wide range of this framework; for instance, (i) 

increasing/decreasing volatility functions of the form 1: ß
t t   with constant 0  and 

some positive/negative powers 1 , and (ii) high-boost-imitating trends of the form 

2:)(


 yyb  for some “target” 0  and some power 02  , are even covered. By the 

way, notice that the geometric Brownian motion model (1) is trivially covered by Assumption 

II.1. 

 Let us now present some long-/short-time estimates upon the decision risk reduction, 

for two different kinds of loss functions. We first illuminate the following:  
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Context 1. Consider the loss function )(11)12(:),( }1{0  L , defined on  

   1,01,0  , where )(11 A  denotes the indicator function on a set A . This corresponds to the 

Bayesian testing problem ),0(0 : xQH  against the alternative 
c

x
PH

),0(1: . In fact, because of 

the specific form of 0L  one gets easily the formulae }1,min{)(
0

pppBRL    and  

 

 

,

;
2

1,1,0

2
1,1

,
2

1,0

)|(
],0[

*


















post

post

post

pifinnumberany

pif

pif

XD
T

 

 

consequently, one basically ends up with choosing between the extremal evidence degrees 

0  or 1  (because the case 
2

1postp  is rather rare already for computer-numerical 

reasons). For this situation, one can, for instance, investigate the decision risk reduction 

 c
xxL PQpBR
),0(),0( ,,

0
  averaged (with some weights) over all possible choices of prior 

probabilities p ; this is useful in situations where one does not want to stick to a single 0p  

(e.g. because the historic data say so). In detail, one obtains:  

 

Theorem II.2  If the Assumption II.1 is satisfied, then the following assertions hold: 

(a) for all RI : 

                             ,0
)1(

,,suplim

1

0
1

2
,

),0(),0(
00

0



 





dp

p

p
PQpBR

tc
x
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                (9) 

 

where t
x

Q 
),0(

 resp. 
tc

x
P

,
),0(

 denotes the restriction of  ),0( xQ  resp.
c

x
P

),0(
 to the time interval 

 t,0   (i.e. the underlying-value-evolution process X  starts at time zero and is observed 

until the time t ).  

 

(b) according to the size of  , for any starting underlying-value 0x  the time evolution 

(with respect to  Tt ,0 ) of the weighted-average decision risk reduction  
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can be estimated from above by the following function  :)(1 th  
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with some strictly positive constants 1c , 2c , )(3 c , )(4 c , )(5 c , )(6 c , 7c , 8c , 9c , 10c ; 

these constants depend on the (fixed) trend function b , the (fixed) volatility function t , the 

(fixed) trend constant c  and, as far as indicated, also on the parameter  . All these 

constants are independent of the starting underlying-value x  and the evolution time t . 

 

 The part (a) of Theorem II.2 describes the behaviour of the weighted-average decision 

risk reduction when one observes X only in the time interval  t,0  (rather than  T,0 ), 

where the time horizon t  tends to zero. In contrast, the part (b) estimates the time-evolution 

of the weighted-average decision  risk reduction for any time horizon  Tt ,0 . The part (a) 

can be used in order to derive the corresponding option price formula (see Section III). 

 Differently to Context 1, let us now deal with another kind of loss function: 

 

Context 2. Consider
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on    1,01,0  , with parameters  1,0  and  1,0 . The corresponding prior risk can be 

computed in a straightforward manner as 
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The corresponding Bayesian decision rule is given by 

.
1

)|(

,0

,0*
],0[

pZp

Zp
pXD

c
T

c
T

postT


  

 

 In other words, one chooses the sample-path-dependent posterior probability as the 

degree of evidence for the validity of the model (3). For this Context 2, one gets the 

following estimates on the decision risk reduction which is associated with the Bayesian 

decision problem with loss function  ,L  : 

 

Theorem II.3  If the Assumption II.1 is satisfied, then the following assertions hold : 

(a) for all [1,0]  and all prior probabilities [1,0]p  : 
    

  .0,,suplim
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(b) according to the size of  , for any starting underlying-value 0x , and any prior 

probability [1,0]p , the time evolution (with respect to  Tt ,0 ) of the decision risk 

reduction  

 tc
x

t
xL PQpBR

p


,

),0(),0(
,,

,
 

 

can be estimated from above by the function )(1 th   given in (10) of Theorem II.2. In 

particular, these estimates do also not depend on the prior probability p . 

 

 Analogously to the remark after Theorem II.2, the parts (a), respectively (b), of 

Theorem II.3 describe the short-time, respectively long-time, behaviour of the corresponding 

decision risk reduction. Again, the part (a) can be used in order to derive the corresponding 

option price formula (see Section III). As a technical side remark, 
pLBR

,
  has to be read as  

 ,
lim L

p
BR


. 

 

 For the sake of brevity, the proofs of the two Theorems II.2 and II.3 will be omitted 

here. They will appear elsewhere, and follow the lines of the proofs for the special case 

0c , which has been treated in Stummer (2001a). In principal, one can (amongst other 

things)  make use of important information characterization results for general measures 

given by Österreicher and Vajda (1993). 

 

III. Option Pricing 

 Finally, as an application of the above results, let us now provide the corresponding 

valuation theorem of European call options on underlyings whose value-evolution process 

tX  is the non-lognormally distributed generalization (3) of the geometric Brownian motion. 

Additionally, the underlying X is supposed to continuously yield dividends of the amount 

dtX tt  between time t  and dtt  , where the dividend yield t  is a deterministic, 

continuous, non-negative function of t . Furthermore, we assume the existence of a bond or 

bank account B , whose value-evolution is given by 
t

vt dvrB
0

)exp( , where the 

deterministic short rate process tr  is  nonnegative and continuous in t . 

 As usual, we also employ the standard assumptions that the lending (interest) rate is 

equal to the borrowing  (interest) rate, that there are no transaction costs and no taxes, and 

that trading takes place continuously. 

 

Theorem III.1  Suppose that the Assumption II.1 holds. Then, the unique arbitrage-based 

price tV  at time t  of a European call option on the underlying X with strike price 0K  

and expiration date T is given by 
 

                     ,)()exp()()exp( 21 dFdvrKdFdvXV N
T

t vN
T

t vtt                (12) 

 

with 
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       and    .: 2
12 

T

t v dvdd   

 

Here, )(yFN  denotes the distribution function, evaluated at y , of the standard normal 

distribution.  

 

Remarks:  

(i)  The original  Black-Scholes theorem (1973) can be derived as a special case of 

Theorem III.1, by taking for the underlying-value evolution tX  the linear trend 

function ycyb )(  and the constant volatility function 0 t  of the geometric 

Brownian motion  SDE (1), together with constant short rate 0 rrt  and zero 

dividend yield .0t  (The non-stochastic interest-rate version of) Merton's 

theorem (1973) deals with the same SDE set-up (1), but with non-constant short 

rates tr  and constant dividend yield 0 t ; Rubinstein (1976) uses non-

constant dividend yields t . Those cases are also covered by Theorem III.1. 
 

(ii) In the theory of “real options” (which are typical building blocks for “venture 

options”),  one uses sometimes the Black-Scholes or Merton's formula, although 

one knows that the underlying quantity can only be approximated by a geometric 

Brownian motion; see e.g. Kemna (1993) and Carr (1995). As a means to support 

such an action plan, the non-stochastic Assumption II.1 involved in Theorem III.1 

delivers a handy-to-verify, non-stochastic toolbox for obtaining a variety of non-

lognormally distributed underlyings X , such that one can still valuate the 

corresponding call options with the Black-Scholes formula or Merton's formula, or 

generalized versions thereof. 
 

(iii) Because of the specific form of (12), the corresponding compound options on 

the underlying option V  can be valuated according to the standard theory (e.g. with 

a Geske-type formula). This can be used, for instance, for early-stage ventures 

valuation where compound options play an important role (see Keeley, Punjabi and 

Turki (1996)).  

 

 In order to indicate the connection with the investigations of the Sections I and II, let 

us shortly give the main essence of the proof of Theorem III.1 for the special case 0 t , 

0tr  and .0t  First of all, the case 1  of the Theorems II.2(b) resp. II.3(b) holds in 

particular for the special trend constant 0c . This can be related to a corresponding short-

term behaviour result upon the relative entropy )||(
,0

),0(),0(
t

x
t
x

PQH
 . Consequently, the 

Girsanov theorem can be applied “in both directions” in order to show that 
0

),0( x
P  is the 

unique equivalent martingale measure for ),( ),0( xt QX . Then the assertion of Theorem III.1 

follows from arbitrage theory and integration. For further details, the reader is referred to the 

author's article (2001b). 
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IV. Summary 

 Some potential tools and viewpoints in the connection with the use of option pricing 

methods for venture valuation are given. Especially, we deal with underlyings whose value 

evolve in time with non-linear trend functions and non-constant volatility functions, which 

are reasonable models for venture components. This contrasts with some standard methods 

which employ the geometric Brownian motion model with linear trend function and constant 

volatility function. We describe a decision procedure concerning the size of the trend 

function, when observing a sample path of the underlying-value evolution. For this 

procedure, the involved decision risk reductions are presented. As a crucial application, the 

corresponding, comfortably computable European call option price formula is derived, under 

handy-to-verify but far-reaching assumptions on the trend function and the volatility function. 
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