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Optimal Liquidation of Venture Capital Stakes 

 

 

 

Robert Dubil
++

 

San Jose State University
*
 

 

 

 
We model the optimal liquidation behavior of a venture capital or non-diversified asset 

management firm faced with a sale of concentrated security holdings. As the firm‟s stake 

is large, its sales can lead to permanent and temporary price depressions. At the optimum, 

the institution chooses the liquidation interval to balance the exposure to the market 

return variance against the impact of its own sales on the realized return. We obtain 

closed-form solutions for power impact functions uncorrelated with returns.  We also 

consider market impact correlated with the return process, i.e. a case where liquidity 

evaporates during severe price dislocations. 

 

 By the very nature of the business, venture capitalists find themselves holding 

significant stakes in the companies they own. Cashing out of their positions carries 

significant liquidity costs and risks. Their sales are closely watched and are perceived to 

have informational content. Large liquidations are subject to price pressures and time 

delays. This paper offers a theoretical model of the optimal disposition strategy for a 

venture capital (VC) firm. 

 Market microstructure research studies the role of trading mechanisms on the 

price-setting process. Most papers, the best known being Kyle (1985) and Glosten and 

Harris (1988), investigate the size of the bid-ask spread in the listed stock markets. Their 

goal is largely descriptive. We build on the behaviorally prescriptive work of Bertsimas 

and Lo (1998), and Almgren and Chriss (2000). They consider an optimization problem 

of an agent who liquidates a large block of securities. As the agent trades, he affects the 

market price. His impact on the market price can be temporary (disappears when the 

market absorbs the quantity he supplies) and permanent (persists due to its informational 

content). The models solve for the optimal sales trajectory (a sequence of sales quantities) 

over the total liquidation time. They assume that the final liquidation horizon is 

exogenously given, and so their results are particularly useful for proprietary traders 

where the holding time is pre-determined by a policy limit or some relative-value strategy  
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horizon. In this paper, we take the perspective of an agent that routinely, but infrequently, 

trades illiquid securities. This could include a venture capitalist, a private equity firm, or 

a high-yield fund. For such an agent, the best total time in which to liquidate any given 

security position, is not exogenously given, but is itself a solution to an optimization 

problem. The agent solves for the optimal length of time over which he engages in a 

sequence or a continuum of equal-size trades. He trades off between the impact of his 

trades on the realized sale value and the risk of holding the assets for an extended period 

of time. The focus is on the concept of endogenous liquidity, as defined by Bangia et al. 

(1999). An agent who decides to sell a large position in the market, where „large‟ is 

defied as exceeding the standard quote depth, will adversely affect the price at which he 

transacts if he sells too quickly. This sale discount will be the price he will pay for 

avoiding the market risk of the position. At the optimal time to liquidate, the change in 

his marginal utility will be zero. 

 The only simplifying assumption we make is that of constant sales speed which 

may lead in non-trivial cases to sub-optimality in the stochastic control sense. Almgren 

and Chriss (2000) show that the deviation is relatively small for the type of “utility” 

function we choose. The restriction is motivated by practical considerations. First, it 

introduces a simple one-dimensional liquidity metric with which to assess the combined 

market and liquidity risk of different equity stakes a venture capital firm may hold. This 

avoids having to account for several risk factors like the stock return variances, the sizes 

of the positions relative to the quote depths, the impact parameters, etc. Second, for 

concentrated stakes, it is hard to segregate permanent and temporary impacts. A VC firm 

with positions in several assets is likely to ignore the extra risk of a linear strategy 

relative to its optimal non-linear alternative for a given final time, and instead will focus 

on the total time.  

 Following the 1996 mandate from the Federal Reserve, money center banks with 

trading portfolios started disclosing market risk statistics in their annual statements and 

setting aside capital against those risks based on internal Value-at-Risk (VaR) models. 

For definitions, see Bank of International Settlements (1996). Increasingly, private equity 

and asset management firms have started to adopt similar models to manage the non-

diversifiable (market price and liquidity) risks of their portfolios. Jarrow and 

Subramanian (1997), and Bangia et al. (1999) extend the market VaR model to 

exogenous liquidity risk factors, i.e. those beyond the firm‟s control (e.g. quote size, bid-

ask spread). Dubil (2001) extends it further to endogenous liquidity and provides a 

method of aggregating VaR across the firm‟s sub-portfolios, each subject to a different 

liquidation horizon. This paper contributes indirectly to this line of research in that it 

offers a method of parameterizing the necessary inputs for the enhanced VaR model. At 

the same time, we make a practical use of the VaR concept: as a simple “utility” function 

which relates the risk (profit variance) to the return (proceeds) of the liquidation program. 

The agent reveals his risk preferences by choosing a confidence interval parameter,  , 

which determines the worst-loss tail probability he is willing to accept. The choice of a 

“utility” function affects the behavior of the optimizing agent, but our results do not 

depend on that particular choice. We could easily obtain closed-form solutions for 

alternative formulations involving a general HARA class as defined by Huang and 

Litzenberger (1988).  
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 The paper is organized as follows. First, we review the research examining the 

optimal liquidation behavior of an agent selling a large block to the market. The control 

parameter is always the sales trajectory over a given a fixed sales horizon, but the studies 

differ in the assumptions they make about the underlying price processes and objective 

functions. Then, we develop, from first principles, a model of the optimal liquidation 

time under the assumption of a constant speed trajectory. The model is recast from units 

and prices into the terms of dollar exposures and returns. The latter offers the preferred 

log-normality of prices and is applicable to the general case of liquidating a large block 

of shares or a private equity stake prior to an IPO. We consider two formulations of the 

impact functions: general power uncorrelated with the price and linear correlated with the 

price process. We obtain closed-form solutions for the first group and numerical ones for 

the second which is in a sense more general, as it allows for the market impacts to change 

(i.e. increase) during large market dislocations. We provide intuitions for the example 

solutions and include the discussion of the alternatives for the optimization functions. 

 

I. Optimal Liquidation Trajectories in Finance Literature 

 As Chan and Lakonishok (1995) showed, a typical large investor‟s trade in the 

stock market is broken down into smaller packages and executed over a period of four 

days or more. Presumably, such protracted liquidation is designed to minimize the 

adverse impact on the overall transaction price, but exposes the trader to market risk. 

Two studies – Bertsimas and Lo (1998), and Almgren and Chriss (2000) – examine the 

best execution strategies for a stock trader under the constraint that he decides in advance 

on the final close-out date. The trader‟s objective is to acquire (liquidate) a fixed number 

of shares, X , in a fixed time period, T . As market conditions change he speeds up or 

slows down his purchases (sales), but his holdings are always equal to the targeted 

amount (zero) on the final date.  

 Bertsimas and Lo (1998) consider an expected trading cost minimization for a 

program designed to acquire a fixed number of shares, X , by the final time, T . While 

the program is in effect, new information arrives in the market in the form of random 

shocks to the trading price. The price is also affected by each trade executed in the 

program. The authors write the basic Bellman equation for this dynamic programming 

optimization and employ the optimal control machinery to solve recursively for the best 

trading trajectory. A trajectory is defined as a sequence of the amounts purchased in each 

of the N  equally spaced time intervals. They show that the best strategies are often linear 

combinations of a „naïve‟ strategy, of breaking the total size X  into T  identical 

packages of size TX / , and a correction portion reflecting the new information. In the 

absence of private stock-specific information, although the naïve strategy is not optimal 

in general, it is the best under the assumption that the price follows an arithmetic random 

walk and the impact of the liquidation strategy is linear. The authors consider alternative 

formulations of the price process and solve for optimal execution strategies for portfolios 

of correlated assets. They also illustrate the difficulties of imposing constraints on the 

optimization parameters. 

 Holthausen et al. (1987 and 1990) first introduced the intra-period distinction 

between temporary and permanent impacts. They estimated the impact of large block 

trades on NYSE on the stock prices. They broke each large block transaction, whether 
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seller- or buyer-initiated, into two estimable variables.  The temporary price effect was 

defined as the continuously compounded return earned on the difference of the block 

transaction price and the equilibrium price prior to the block transaction. The permanent 

price effect was defined as the return on the difference between the equilibrium prices 

after and before the block transaction. For a seller-initiated block, these are depicted in 

Figure 1 (see Holthausen et al., 1987, Fig. 1). 

 In Almgren and Chriss (2000), who follow the same set-up, the stock price is 

subject to both effects in each of the N  equally spaced intervals Nktt kk ,,1),,( 1  , of 

length kNTtt kk   ,/1 . A trader faces selling X  shares over the fixed total time 

T  through a sequence of sales in each of the N  intervals. His holdings at the end points 

of the intervals are 0 ,x X  1 2 1, , , ,Nx x x   0Nx  , his sales during the intervals are 

1 , 1, ,k kx x k N  , and the speed with which he sells in each interval is denoted by 

1( ) /k k kv x x   . The equilibrium price follows an arithmetic random walk with no 

drift, but is subject to a permanent impact effect resulting from the trader‟s action. The 

equation of motion for the equilibrium price is: 

)(
~

1 kkkk vgzSS           (1) 

 

where )( kvg  represents the permanent impact function,   is the annualized normal 

volatility of the stock price, and kz
~

  is a standard normal deviate, with 

kkzzE kk 





  ,0

~~

. Note that )( kvg  is pre-multiplied by  to emphasize that the 

total permanent impact effect depends more on the total number of shares, kv , sold in 

each interval, than on the pure intensity parameter kv . The trading price, kS
~

, the trader 

faces in each interval is subject to a temporary impact function )( kvh : 

 

)(1

~

kkk vhSS            (2) 

 

Instead of simply minimizing the expected cost, the trader cares about the risk of the 

strategy (variance of the liquidation cost). He minimizes the negative utility associated 

with the cost of the protracted liquidation over the time interval ),,0( T . That cost, C , 

is defined as the difference between an instantaneous sale of all of his X  units at the 

time-zero price 0S  and the sum of the proceeds from a sequence of sales of 1( )k kx x  , 

each at the trading price kS
~

, over the entire time interval (0, )T , i.e. 
~

0 11
( )

N

kk kk
C XS x x S
   . The cost is subject to the sequence of the random shocks 

kz
~

 .  Since the shocks are independent, the mean and the variance of the cost 

function can be derived as functions of the strategy sequence. The impact functions are 
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assumed to be linear in the sales intensity parameter kv , and parameterized as 

kk vvg )(  and kkk vnvh   )sgn()( . Hence, )( kvh  is denominated in $/share,   can 

be thought of as half the bid-ask spread denominated in $/share, and   has a peculiar 

denomination of [$/share]/[share/time]. Almgren and Chriss (2000) define a mean-

variance efficient frontier for a trader who minimizes the expected cost given a level of 

variance. This is equivalent to an unconstrained minimization of 

 

 αV[C]E[C]
Nkxk




min
},,1:{ 

        (3) 

 

where the Lagrange multiplier   can be interpreted as the relative risk aversion 

coefficient. When 0 , a unique solution *}{ kx  is guaranteed by the strict concavity of 

the minimand. For a risk-neutral trader ( 0 ), the optimal trajectory is a straight line of 

declining holdings over time defined by the decrement NXnk / . Risk averse traders 

follow convex lines below that line; risk loving traders follow concave lines above the 

straight line. Risk averse traders sell relatively more up front, and less later. They incur 

higher impact costs in order to avoid the exposure to the random shocks.  

 The two papers differ in their choices of the optimized functions. In Bertsimas 

and Lo (1998), the agent is an expected cost minimizer. The expected cost depends on the 

variance of the price process, but the agent does not care about the variance of the cost 

itself. The optimal control methodology allows for the agent to change his strategy during 

the execution of the program. Almgren and Chriss (2000) explicitly make their agent 

worry about risk by choosing only those solutions which lie on the mean-variance 

efficient frontier. Equivalently, they adopt a constant relative risk aversion utility 

function. If the latter is of a particular form (e.g. log-utility), the static up-front 

optimization yields the same solution as the less restrictive dynamic program. The 

authors discuss the use of VaR utility which does not guarantee that. It does avoid, 

however, their somewhat counterintuitive result whereby large and small baskets are 

liquidated identically by a trader with a given risk aversion coefficient. It also produces 

solutions closer to the straight line. In our optimization, we adopt VaR as the objective 

function
1
 even though the analysis does not depend on this assumption. This allows us to 

relate risk to return in a straightforward, intuitively parameterized, formulation. Dubil 

(2002) argues that this is the best choice for concentrated wealth liquidations in a non-

general-equilibrium setting.  He shows that it is equivalent to a mean-standard-deviation 

„efficient frontier‟ selection.  

 In order for a liquidity model to be of practical use, the market impact parameters  

have to be computed. The liquidity effects of this paper can be readily estimated by 

adapting the methodology of Glosten and Harris (1988) who consider two components of 

the bid-ask spread of NYSE stocks. The transitory component allows market-makers to 

cover inventory costs, clearing fees and monopoly profits and explains the negative serial 

correlation of closing prices. The persistent component due to adverse selection costs 

allows market-makers to recover from liquidity traders losses on trades with informed 

                                                           
1
 Basak and Shapiro (2001) examine some unappealing outcomes when the VaR-derived utility function is 

used in a continuous-time partial equilibrium. 
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traders. This information asymmetry component does not contribute to the 

serial correlation and is thus separable form the first. The paper relates the adverse 

selection cost to order size and applies a likelihood method to estimate and decompose 

the spread from time-series prices into the inventory and asymmetric information parts. 

Data requirements are quite modest and the specification is extendible to other markets of 

interest (VC stakes, private placements, high yield, etc.). We refer the reader to O‟Hara 

(1997) for a more extensive list of references. 

 

II. The Optimal Liquidation Horizon Model 

 In the reviewed studies of Section I, the agents face an externally imposed final 

liquidation time and solve for the optimal sales trajectory between time zero and that final 

time. The problems are therefore posed from a perspective of a proprietary trader who 

must liquidate by the end of a certain time interval (say, by the end of the day). In our 

model, the venture capital or high-yield investor does not face an exogenous final sale 

time. As our agent‟s problem is more general and a lot more difficult – to choose the best 

time and the best strategy – we choose to make a more-fitting simplifying assumption. He 

solves for the optimal final horizon by adopting a simple strategy to liquidate at a 

constant rate per unit of time. His strategy trajectory (a plot of his remaining position 

against time) is a straight line. We solve for the final time point where the line crosses the 

horizontal axis. This is equivalent to solving for the one constant rate of his sales 

expressed in units sold per time. His behavior is motivated by the fact that he has no 

special information about the timing or the „lumpiness‟ of other trades coming to the 

market beyond knowing the market impact of his own actions. He chooses the simplest 

strategy to sell the same amount in each time interval, but is concerned about the total 

time of liquidation.  

 We also do not follow the set-up of an agent optimally liquidating X  number of 

shares under the assumption that the equilibrium stock price is locally an arithmetic 

Brownian motion with no drift
2
. Instead, we consider an agent optimally reducing, 

instead of the number of shares, his dollar exposure to the return on a stock under the 

more palatable assumption that the return, not the price, follows a locally arithmetic 

Brownian motion. The mathematics are essentially the same, but the parameter 

interpretations are slightly different. Note that the main difference is the stochastic 

process assumption (log-normal price) and the form of the impact functions (cost defined 

as a known function of returns instead of the price).  

 Within the model, we consider two different forms of the market impact 

formulations: a general power function, which is uncorrelated with the price process, with 

some of its special cases (e.g. linear, square root), and a stochastic linear impact function 

correlated with the price process. The latter case allows for a feedback loop, whereby a 

significant drop in returns (prices) can cause a deterioration of liquidity. The agent‟s 

objective is to choose optimally the final time by which his holdings will be reduced to 

zero under the assumption that he sells at a constant speed over that horizon. His sales 

cause a permanent market return change at the “end” of each interval ),( tdtt  . They 

also cause a temporary shock to the realized return which deviates from the general 

market return, during the interval ),( tdtt  , but dissipates completely by the “end” of 

                                                           
2
 The equilibrium price has no drift except that due the permanent impact of the agent‟s sales.  
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that interval. We work in continuous time, but it is easy to show that the results 

are a natural limit of the discrete version in which the number of trading intervals within 

the fixed final horizon increases to infinity
3
. 

 Let tW  be the dollar amount of investment in the underlying asset (VC stake, 

listed stock or high-yield bond) at time t . The initial exposure to the asset return is 

denoted by 0W , and the final exposure is zero, i.e. 0TW . Let us define the agent‟s 

holdings at time t , as the ratio of his remaining dollar exposure to the original 

investment, i.e. let 
0W

W
x t

t  . The agent starts with holdings 10  Xx  at time 0t  and 

liquidates all of them by the final time T , i.e. 0Tx . In each interval ),( tdtt  , the 

agent sells 
0

lim( )t t dt t
dt

dx x x


    of his holdings. The speed of trading in each interval is 

defined as t
t

dx
v

dt
  . The equilibrium return on the underlying asset tR , representing all 

public information in the market, follows an arithmetic Brownian motion process
4
. The 

only drift is due to the accumulated permanent impact on the price from the sales 

executed by our agent. The equilibrium return, tR , at time ],0[ Tt  can thus be written: 

 

dsvgzR
t

stt )(
0         (4) 

 

where )( tvg  represents the permanent impact of the agent‟s sales on the equilibrium 

return, and tz  is the standard Wiener process. The cumulative trading return, tR
~

, realized 

by the agent through a trade within each interval ),( tdtt 
5
, is also subject to the 

temporary impact )( tvh  as a function of the speed of sales within the interval: 

 

)(
~

ttt vhRR           (5) 

 

Let us further assume that the agent sells at a constant speed vvt  , so that 

 

tdx v dt            (6) 

 

                                                           
3
 In continuous time, it is less intuitive to imagine the temporary impact dissipating by the end of an 

infinitesimal interval while the permanent impact persists. 
4
 The cumulative return, tR , is computed over the entire interval ),0( t . In discrete time, the cumulative 

return through period k , would be equivalently defined by  


k

i ik rR
1

)1(1 , where ir  is the 

return on the asset in period i . 

5
 Note that both tR  and tR

~

 are random. The tilde symbol merely distinguishes the „intra-period‟ return 

realized by our agent from the equilibrium return in the market. 



 72  

The excess profit (most likely negative, i.e. a cost) due to the non-

instantaneous liquidation, as a fraction of his original wealth, is defined as: 

 

 
T

t

T

tt vdtRdxR
0

~

0

~

)(         (7) 

 

 In order to introduce risk into the agent‟s decision process, we adopt a concave 

utility function. We choose the mean-standard deviation VaR framework. The VaR of a 

set of positions is defined as a profit value, * , for which the probability of the profit, 

 , falling below that critical value, * , is equal to a given quantity. The latter is equal 

to one minus the chosen confidence interval. For a normally distributed profit function, 

the VaR, * , is defined explicitly as: 

 

][][*  VE          (8) 

 

where   is a known number from the standard normal table corresponding to the chosen 

confidence level, e.g. 1.645 for a 5% left-tail probability. ][E  and ][V  denote the 

expected value and the variance of the profit. The confidence level-related parameter   

embodies an implicit set of risk preferences of the agent. His objective is to choose an 

optimal final liquidation time to maximize the VaR of his profit: 

 

}][][{max*max  VE
TT

       (9) 

 

Eq.       (9) is analogous to Eq.         (3) as 

C , with a change to the square root term in the variance, and is equivalent to the 

minimization of the VaR of the agent‟s excess cost due to the non-instantaneous 

liquidation. Dubil (2002) argues the appropriateness of using VaR in liquidity-

constrained wealth liquidation cases, e.g. for venture capitalists and executives with 

vested stock holdings. The interpretation of the agent‟s „utility‟ function is 

straightforward and appealing. He maximizes the expected profit of the liquidation (sale 

revenue net of the market impact), but assigns a penalty function to the risk defined as the 

standard deviation of the profit. The penalty parameter,  , depends directly on his 

„worry‟ level. An institutional argument in favor of choosing Eq.       (9) as 

the specification is that the optimand in Eq.         (8) is often 

viewed as a cost determinant rather than a risk measure. Bank and asset management 

firms multiply the dollar VaR by their borrowing rate as the amount of capital they 

“carry” to cover potential cost of liquidation. This is the prescribed Bank for International 

Settlements definition of the market risk capital.  

 

III. A General Power Function Market Impact 

 Let us assume that the market impact functions are of the following general form: 

 

H

ttt

G

tt

vnvh

vvg









)sgn()(

)(
        (10) 
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where G and H are given constants
6
. In a pure sale strategy, 1)sgn( tn  for all t . The 

trading return in the interval ),( tdtt   is equal to: 

dsvvzR
t

G

s

H

ttt 
0

~

        (11) 

 

The last three terms in Eq.        (11) represent a total liquidity 

discount. Using the Def. (7), we can write the profit function for the agent liquidating at a 

constant speed, v , as
7
: 

 

21

2
11

0
TvTvvTdtzv GH

T

t

          (12) 

 

The expected value of the profit is equal to
8
: 

 
21

2
11][ TvTvvTE GH           (13) 

 

and the variance of the profit is equal to
9
: 

 
223

3
1][ vTV           (14) 

 

Since vTX  , the mean and the variance can be written as: 

 

22

3
1

11

2
11

][

][





TXV

TXTXXE GGHH



 

      (15) 

 

Now we can set up the agent‟s optimization problem as the trade-off between the total 

liquidity discount, affecting the mean of the profit, and the „market risk‟ of returns, 

represented in the total variance of the profit, multiplied by the penalty parameter α, 

representing the agent‟s risk tolerance: 

 

}{max 22

3
111

2
11  TXTXTXX GGHH

T
 

    (16) 

                                                           
6
 Almgren (2001) extends original linear temporary impact to power specifications. 

7
 Write dtdsvdtvdtvdtzv

T t
G

T
H

TT

t )(
0 0

1

0

1

00  
    and reduce to Eq.       

(12). 

8
 Use integration by parts to show that 0][]|[][

0
0

0
 

T

t

T

t

T

t tdzEtzEdtzE . 

9
 Show that  

T

t

T

t

T

t

T

tT

T

t

T

t

T

t dztTtdzdzTtdzTztdztzdtz
00000

0
0

)(| . Then 

show that 

3

3
1

0

2

0

2

0

222

00
)(])([])([])([][ TdttTdttTEdztTEdztTEdtzV

TTT

t

T

t

T
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The first-order condition for this optimization is the following equation in T : 

 

 

0)1( 2

1

32

11

2
111 

 XTTXGTXH GGHH      (17) 

 

Note that 1X . It is carried here to emphasize that all the parameters in     

    (10) are relative and can be defined for the holdings of the firm or a 

market. In general, Equation     (17) has to be solved by numerical methods. 

However, we can obtain closed-form solutions for some special cases. 

 

A. Linear Market Impact Functions 

 First let 1G . The permanent impact function is linear in the speed of sales, i.e. 

( )t tg v v  and ( ) H

t th v v   . Eq.     (17) can be solved explicitly for T : 

 

2

1

1

32 
















HHXH
T




        (18) 

 

If we further assume that 1 HG , so that ( )t tg v v  and ( )t th v v   , then the 

explicit solution for the optimal liquidation time becomes: 

 

3

2

32

















X
T        (19) 

 

 Let us consider a few numerical examples for the linear market impact 

1 HG . Let 001714.0,15.0,645.1   . This corresponds to a 95% confidence 

interval VaR utility, an annualized return volatility of 15%, and a temporary impact of 

17.14 bp when selling at a pace of full holdings over a year. The optimal liquidation time 

is equal to 0833.0T  or 1 month. If the annualized volatility is changed to 10% 

( 1.645,   0.10,   0.001714  ), the agent optimally sells over 40 days as the risk 

of staying in the market is reduced. Instead, if he wants the same profit threshold at a 

99% confidence interval, i.e. he becomes more “risk-averse” ( 2.33,   0.15,   

0.001714  ) he will reduce his liquidation time to about 24 days. 

 The solutions         (18)-      

 (19) do not depend on the permanent impact coefficient,  , as it affects the 

trading return only through the cumulative sales total and not the sale amount in each 

interval. They are also independent of the mean temporary impact,  , which is a constant 

subtraction from the return no matter what the speed of sales is. 

 

B. Other Special Cases 
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 Let us consider the square root case for the permanent impact with a 

general form of the temporary impact function. We let 
2
1G  and H be general. The 

impact functions are ( )t tg v v  and ( ) H

t th v v   , and the closed-form solution is 
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If the temporary impact is also of a square root form, 
2
1H , so that the impact functions 

are ( )t tg v v  and ( )t th v v   , then the closed-form solution is 
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3
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T          (21) 

 

The choice of the exponent in the power function is subject to empirical research. The 

exponent of less than one, the square root in particular, is quite intuitive, as it exhibits 

diminishing returns. As one increases the speed of liquidation, initially the market impact 

grows rapidly, but at high levels of sales, the growth in the market impact decreases. In 

the square root case the solution is linear in the temporary impact parameter   and is 

independent of the initial size of the holdings to be liquidated, X . 

 What stands out in (20) and          (21) is that 

the different components of the liquidity discount do not have the same effect on the 

solution. The higher the temporary impact parameter  , the longer the optimal final time. 

At a given speed, an increase in the temporary impact parameter reduces the agent's 

realized return for each sale. To compensate for that, the agent slows down his sales and 

extends his selling horizon. This can be seen in Eq.     (17) with G=H=½. The part 

of the agent‟s maximand related to the temporary impact is an increasing function of T. In 

contrast, the objective function is a decreasing function of the final time T. The 

permanent impact parameter   also reduces the realized return in each interval, but only 

via an expression related to the cumulative amount transacted. It thus acts like a 

deterministic time-proportional „drag‟ on the expected returns and profit, not unlike the 

market risk penalty function on the agent's total utility. Were this „drag‟ per unit of time 

to increase, the agent would speed up his sales to minimize its negative effect on total 

profit. In the linear case, this „drag‟ was simply proportional to the total amount for sale 

and independent of time. With G=1, it dropped out of the Eq.     (17). As such, it 

operated similarly to a constant bid-ask spread and did not affect the solution at all. 

 Let us now set 0 . As it is often difficult to distinguish between the 

information-driven equilibrium price movement and one‟s own permanent impact, it is 

convenient to assume no permanent impact to ease the estimation of the temporary 

effects due to one‟s inventory problems. We allow a general form of the temporary 

impact, i.e. ( ) 0tg v   and ( ) H

t th v v   , and still get a closed-form solution. 
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The solution         (22) is identical to that of the linear case. 

There the permanent impact affected the equilibrium return only through the sales total, 

and not in each interval. Here that reduction is zero. 

 

IV. Stochastic Market Impact Correlated With Returns 

 The specification in this section captures a systemic feedback loop where, as 

prices and realized returns in the market drop, liquidity deteriorates, leading to further 

temporary depression of the returns. An obvious example here is the bursting of the tech 

bubble in 2000. This can be accomplished by assuming 
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where 
~

tz  is another Wiener process correlated with that driving the returns in     

    (4), i.e. 
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and   and   are two constants. The trading return is a random variable dependent on the 

realizations of two Brownian motions: 
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The profit function can be written as
10

: 
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To set up the optimization, we derive, using vTX  , the expected profit as 

 

2

2
1

2

][ X
T

X
XE 


          (27) 

                                                           

10
 Write dtdsvdtzvdtvdtvdtzv

T tT

t

TTT

t )(
0 0

2

0

~
2

0

2

00     and reduce. 



 77  

 

and the variance of the profit
11

 as 
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The agent maximizes the VaR of his profit: 
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He faces the following first-order condition: 
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Eq.  (30), equivalent to a 5-th degree polynomial in T , can be solved numerically. 

 

 Table I shows the results using the numerical values of the previous section, 

001714.0,15.0,645.1   . Recall that the optimal liquidation time without the 

correlated term was 0833.0T  which was equivalent to 1 month. Here 0  is 

equivalent to the non-stochastic linear case. One common feature of all the results is that, 

for all correlations levels, the optimal liquidation time attains a minimum at some level of 

 12
 and increases rapidly as we move away from that level in either direction. That is, the 

larger the shocks in absolute value, the more the agent compensates for them by staying 

longer in the market. In the combinations 0,0    (and 0,0   ), the liquidity 

deteriorates when the returns in the markets drop. The agent‟s profit has high variability 

as the combined shocks to his trading returns are strengthened. It is optimal for him to 

extend the liquidation period in order to reduce the temporary impact on the realized 

return. When the „reinforcement‟ coefficient is low, 001.0 , and the correlation of the 

market impact with the return process is negative, 50.0 , the agent liquidates 

quickly within a little over a month, 08596.0* T . When the feedback loop is amplified, 

                                                           
11

 To derive the variance we need to evaluate the following expression: 
~ ~ ~

0 0 0 0 0 0
[ ] [ ] [ ]

T T T T T T

t w wt u uI E z dt z dt E z z dudw E z z dudw         . 

We can split the inside integral w.r.t. du  in two regions ),0( wu  and ),( Twu . Noting that 

],min[][
~

wuzzE wu   , the expression I  evaluates to: 

31
30 0 0

T w T T

w
I ududw wdudw T        . 

12
 That level depends on all the other parameters through the first-order condition     (17). In the 

example, it is slightly negative as can be seen from Table I. 
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as   increases to 0.050, the agent‟s profits suffer greater variability, 

( ) 0.0867Std    0.0264 . He compensates, by extending his sales over time to 

36772.0* T , in order to minimize the utility penalty for that. The profit VaR would 

have declined to 2063.0)( VaR
13

, had he stayed at the no-longer-optimal 

08596.0T . Instead it drops only to 1474.0)( VaR  at the optimal 36772.0* T . 

 

V. Conclusion 

 This paper develops a model of the liquidation behavior of a venture capitalist or 

hedge fund manager holding a concentrated stake in an asset. At the optimum, the 

liquidator balances the desire to limit the risk of random market factors against the 

negative impact his sales have on the realized return. The position is large enough so that 

it is exposed not only to market, but also liquidity risks. The realizable value of the asset 

may be significantly smaller than that based on marked-to-market prices. We consider 

two impact function characterizations: power, uncorrelated with returns, and linear, 

correlated with returns. We obtain closed-form solutions for the first. We examine 

numerical solution to the second case which provides for a feedback loop between price 

dislocations and liquidity. The solutions illustrate the effect of the interaction of liquidity 

and market conditions on the liquidator‟s optimal strategy.   

                                                           
13

 Not shown in Table I. Plug in the original T=0.08596 to the VaR Equation     (16). 

 



 79  

REFERENCES 

 

Almgren, Robert and Neil Chriss, 2000, Optimal Execution of Portfolio Transactions, 

Journal of Risk 3 (Winter 2000/2001), 5-39. 

Almgren, Robert, 2001, Optimal Execution with Nonlinear Impact Functions and 

Trading-Enhanced Risk, University of Toronto Working Paper 

Bangia Anil, Francis X. Diebold, Til Schuermann, and John D. Stroughair, 1999, 

Liquidity on the outside, Risk (June). 

Bangia Anil, Francis X. Diebold, Til Schuermann, and John D. Stroughair, 1999, 

Modeling Liquidity Risk, With Implications for Traditional Market Risk 

Measurement and Management, Working Paper 99-06, Financial Institutions 

Center, The Wharton School. 

Bank of International Settlements, 1996, Amendment to the Capital Accord to 

Incorporate Market Risks, January 1996, updated April 1998 

Basak Suleyman and Alex Shapiro, 2001, Value-at-Risk-Based Risk Management: 

Optimal Policies and Asset Management, Review of Financial Studies 14(2), 371-

406. 

Bertsimas, Dimitris and Andrew W. Lo, 1998, Optimal Control of Execution Costs, 

Journal of Financial Markets 1, 1-50. 

Chan, Louis K.C. and Josef Lakonishok, 1995, The behavior of stock prices around 

institutional trades, Journal of Finance 50, 1147-74. 

Dubil, Robert, 2001, A liquidity-adjusted Value-at-Risk model based on a market-

specific transaction clock, Working Paper, U. of Connecticut. 

Dubil, Robert, 2002, The risk-return tradeoff when converting wealth into cash, Working 

Paper, U. of Connecticut. 

Glosten, Lawrence R. and Lawrence E. Harris, 1988, Estimating the Components of the 

Bid-Ask Spread, Journal of Financial Economics 21, 123-142. 

Holthausen, Robert W., Richard W. Leftwich, and David Mayers, 1987, The effect of 

large block transactions on security prices, Journal of Financial Economics 19, 

237-267. 

Holthausen, Robert W., Richard W. Leftwich, and David Mayers, 1990, Large-block 

transactions, the speed of response, and temporary and permanent stock-price 

effects, Journal of Financial Economics 26, 71-95. 

Huang, Chi-fu and Robert Litzenberger, 1988, Foundations for Financial Economics 

(North Holland). 

Jarrow, Robert and Ajay Subramanian, 1997, Mopping up Liquidity, Risk (December). 

Kyle, Albert S., 1985, Continuous Auctions and Insider Trading, Econometrica 53(6), 

1315-1335. 

O‟Hara, Maureen, 1997, Market Microstructure Theory (Blackwell Publishers, Inc.). 

 

 



 80  

 

Table I. 

  Table I. Optimal Liquidation Times, the Expected Value, Variance and VaR of the Profit as Functions of  

   Θ  and ρ            

                              
       Optimal T       E[Π]     Std[Π]     VaR[Π]   

      Θ     ρ =-0.99 ρ =-0.5 ρ =0 ρ =0.5 ρ =0.99 ρ =-0.99 ρ =-0.5 ρ =0 ρ =-0.99 ρ =-0.5 ρ =0 ρ =-0.99 ρ =-0.5 ρ =0 

-0.050  0.33627 0.35359 0.36165 0.36772 0.37266 -0.0051 -0.0048 -0.0047 0.0071 0.0501 0.0708 -0.0168 -0.0872 -0.1213 

-0.030  0.20380 0.22547 0.23520 0.24239 0.24818 -0.0084 -0.0076 -0.0073 0.0055 0.0390 0.0551 -0.0175 -0.0718 -0.0980 

-0.010  0.07462 0.10636 0.11805 0.12624 0.13260 -0.0230 -0.0161 -0.0145 0.0040 0.0247 0.0342 -0.0296 -0.0568 -0.0707 

-0.003  0.07093 0.08122 0.08783 0.09296 0.09714 -0.0242 -0.0211 -0.0195 0.0167 0.0223 0.0263 -0.0516 -0.0577 -0.0628 

-0.002  0.07486 0.08080 0.08541 0.08920 0.09246 -0.0229 -0.0212 -0.0201 0.0195 0.0229 0.0256 -0.0550 -0.0588 -0.0622 

-0.001  0.07902 0.08164 0.08390 0.08596 0.08782 -0.0217 -0.0210 -0.0204 0.0223 0.0238 0.0252 -0.0584 -0.0601 -0.0618 

0.000  0.08338 0.08338 0.08338 0.08338 0.08338 -0.0206 -0.0206 -0.0206 0.0250 0.0250 0.0250 -0.0617 -0.0617 -0.0617 

0.001  0.08782 0.08596 0.08390 0.08164 0.07902 -0.0195 -0.0199 -0.0204 0.0276 0.0264 0.0252 -0.0649 -0.0634 -0.0618 

0.002  0.09246 0.08920 0.08541 0.08080 0.07486 -0.0185 -0.0192 -0.0201 0.0301 0.0280 0.0256 -0.0680 -0.0653 -0.0622 

0.003  0.09714 0.09296 0.08783 0.08122 0.07093 -0.0176 -0.0184 -0.0195 0.0325 0.0297 0.0263 -0.0711 -0.0672 -0.0628 

0.010  0.13260 0.12624 0.11805 0.10636 0.07462 -0.0129 -0.0136 -0.0145 0.0473 0.0414 0.0342 -0.0907 -0.0816 -0.0707 

0.030  0.24818 0.24239 0.23520 0.22547 0.20380 -0.0069 -0.0071 -0.0073 0.0777 0.0675 0.0551 -0.1348 -0.1181 -0.0980 

0.050  0.37266 0.36772 0.36165 0.35359 0.33627 -0.0046 -0.0047 -0.0047 0.0999 0.0867 0.0708 -0.1689 -0.1474 -0.1213 
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Figure 1. Temporary and permanent price effects of a seller-initiated block. 
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