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Price Bubbles of New-Technology IPOs 

 

 

 

Haim Kedar-Levy++ 

Ben-Gurion University of the Negev* 

 

 

 
Asset pricing models with atomistic agents typically relax assumptions concerning 

rationality and/or homogenous information in order to track endogenous bubbles. In this 

model, identically informed rational agents hold a Perceived Law of Motion (PLM) for a 

single new technology asset at IPO, yet they differ with respect to risk aversion. By 

mapping risk preferences to strategies, we use marginal supply and demand functions to 

solve for the PLM if REE holds. By relaxing the assumption of complete knowledge of 

agent's tastes and wealth, post-IPO bubbles emerge where the Actual Law of Motion is an 

amplification (bubble) of the price processes vs. the PLM.  

 

Introduction 

Homogeneous information, uniform tastes and agents' rationality are cornerstone 

assumptions for capital asset pricing, but prior art conclude that under these conditions, 

non-atomistic agents have no incentive to trade and the expected equilibrium price will 

be stable. These results do not correspond to observation of capital asset markets, as trade 

is evident and bubbles are revealed as they occasionally burst. Over the past decades, 

major stock-market bubbles were associated with significant impact of new technologies 

on the real economy (1929, 2000) or new trade mechanisms like portfolio insurance and 

program trading (1987). The question we address here is whether unobservability of 

preferences and wealth might result in bubbles, especially following new-technology 

IPO.  

Divergence of real and financial assets from fundamental valuation has been 

documented since the early 80's (Shiller (1981), Grossman and Shiller (1981), Summers 

(1986)). Academics, mostly, define financial bubbles as deviations from fundamentals 
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that persist for periods that are too long to be explained by response to external shocks. 

The first researchers of the subject, Keynes (1930) and Hicks (1946), attributed such 

deviations to speculation which they consider rational. Both addressed speculation as a 

byproduct of differences in risk aversion where more risk-averse agents "sell" some of 

the risk to less risk-averse ones. The more risk-averse agents trade based on fundamental 

values while their counterparts adopt speculative strategies. It turns out that Keynes and 

Hicks see speculation as a tool to reallocate risk among trading agents. In this model, we 

segregate agents by investment strategies based on different measures of risk aversion, 

thus precisely fit their approach.  

Equilibrium analysis of capital asset pricing with unobservable fundamentals 

started with Feldman's Ph.D. dissertation (1983), and followed in articles by Dothan and 

Feldman (1986), Detemple (1986, 1991), Gennotte (1986), Feldman (1989, 1992), 

Detemple and Murthy (1994) and Coles, Loewenstein and Suay (1995). In general, the 

goal in the above mentioned models is to explicitly solve for the unobservable moments 

endogenously. They view the price process as a noisy realization of the unobservable 

fundamental moments. In most cases, the realized price process is a function of the 

conditional unobservable moments of the production factors, production function and 

agents' first and second utility function derivatives. Another approach has been taken by 

Kurz (1994a, 1994b, 1996 and 1997) who constructed the theory of Rational Beliefs. 

According to Kurz, agents do not possess complete structural knowledge of the 

environment and its changes, especially changes in technology, tastes and economic 

institutions. Thus, there is a question whether such changes are random deviations around 

a fixed mean value function of a stationary process, or whether they reflect changes in the 

mean value function itself. Beliefs must satisfy Kurz's Rationality Principle, that call for 

consistency of beliefs with the data. Essentially, beliefs are formed by assuming agents 

act as econometricians who apply a learning model on realized returns and use the 

coefficients to plan ahead.  

Rational expectations models of bubbles are attractive as they adhere to core 

economic theory. This is why these models were the first to appear in the late '70s - early 

'80s (Blanchard (1979), Flood and Garber (1980), Blanchard and Watson (1982), Tirole 

(1982)). Bubbles in these models evolve based on a self-fulfilling rational expectations 

mechanism, which supports the bubble as long as it exists, and the price crashes when the 

mechanism disappears. These models do not specify what endogenous conditions must be 

satisfied for a bubble to evolve, knowing that a stable economy have operated with the 

same agents and technology prior to the boom, and under what inherent terms will the 

bubble blast. Starting from the mid '80s equilibrium models of bubbles typically involve 

explicit or implicit assumptions of irrational behavior by a certain group of agents. Some 

models assume noise trading (e.g., Kyle (1985), Black (1986), De-long, Shleifer, 

Summers and Waldmann (1990), Binswanger (1999), and Levy, Levy and Solomon 

(2000). Others assume overreaction to news (Jegadeesh and Titman (1995), De-Bondt 

and Thaler (1987), Kent, Hirshleifer and Subrahmanyam (1998)) or signaling between 

investors who have asymmetric information (Allen and Gale (1992), (2000a), (2000b), 

Allen and Gorton (1993), Allen, Morris and Postlewaite (1993)). The economic meaning 

of such assumptions is that either fundamental information is not available to all agents 

(asymmetric information), and/or different agents process information in different ways 

(the noise-trader approach). Binswanger (1999) extends De-Long et al.'s model by 
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allowing dynamic changes of the fundamentals due to technological changes. On another 

front, the emergence of derivative securities and thereby Portfolio Insurance (PI) is 

claimed to contribute to the underlying assets volatility if markets are not complete 

(Grossman (1988a), (1988b), Grossman and Zhou, (1996)).1 Research about PI boosted 

after 1987 when academia and government-committees have studied their potential 

contribution to the stock market crash (Brady, 1988, SEC, 1987).  

In this paper we show that agents' inability to observe others' optimal trading 

strategies, classified to Momentum and Contrarian, might result in amplified volatility 

and return if the Momentum strategy dominates or a dimmed price process if the 

Contrarian dominates. We thus specify explicitly positive (and negative) mispricing, 

while observability yields the Merton (1971) rational expectations process. This model 

uses the notion of incomplete information at and post-IPO to establish a model of 

bubbles, thus should not be considered as a model of IPO.    

Section I describes optimal dynamic investment rules for non-price-taking agent 

groups, based on Merton (1971). In Section II we define the groups, derive their marginal 

supply and demand functions for shares and solve the equilibrium price. In Section III we 

relax the complete information assumption and derive ex-post moments vs. Rational 

Expectations Equilibrium (REE), resulting in Momentum Dominance Equilibria (MDE) 

or Contrarian Dominance Equilibria (CDE). In section IV we discuss bubbles and Section 

V concludes.  

 

I. The Economic Setting 

Consider a reduced form of Merton (1971) economy in which we address the 

portfolio selection problem with incomplete information2. The investment opportunity 

set is comprised of two assets, a riskless bond yielding exogenous, fixed rate of return r 

and a single risky asset. The latter represents a new-technology equity share for which 

there is no return and variability track-record.3 All agents have the same information thus 

                                                           
1 In order to insure a portfolio, an investor may either hold the underlying risky-asset long and buy a put 

option with a strike equal to the desired insurance level, or he may buy a call option with a risk-free asset. 

In both cases, the negative tail of the distribution is sold (for a fair premium) to the issuer of the option. The 

latter may bare the risk, and the underlying asset price will not be affected, or he may replicate a Portfolio 

Insurance (PI) strategy in the underlying securities market to transfer his risk to other investors. By doing 

so, such agent is executing a momentum (speculative) trading strategy vs. "the market" as long as he is 

atomistic. However, if the investor affects market price, the latter will rise and eventually revert to the 

fundamental. It turns out that by modeling momentum strategies in the underlying assets we capture the 

spillover of the demand for portfolio insurance to the contrarian agents, who are essentially suppliers of PI. 
2 Merton (1971) shows that the effect of a fixed planning horizon on the intertemporal portfolio-selection 

problem comes through the riskless capitalization factor re Ttr /)1( )(  , applied on a constant displacement in 

the HARA-type utility function, termed . This function is strictly concave and monotonically declines in t. 

For a long enough horizon T, this factor is marginally constant when T is far ahead and declines at faster 

rates as Tt  , reaching 0 at T. Particularly throughout the last phase, systematic effects on the stock weight 

in the portfolio emerge. Since we want to present different portfolio effects, we shall ignore the time-effects 

by assuming that T is far enough for all agents, an assumption that corresponds with IPO at t=0. 
3 In the Merton (1971) model there is no "hedging demand" which implies a certain degree of myopia that 

the  present model inherits. Since the context here is for new-technology shares with idiosyncratic risk, this 

short-coming may be of less importance. Alternatively, as noted in Ross (1975), one may consider the 

above investors as institutions for which the myopia deficiency is less important than for an individual 

investor. 
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the return generating process of the stock is assumed by all to follow a discrete-time 

Geometric Brownian Motion, being the Perceived Law of Motion (PLM). We assume 

that agents do not know each other's wealth and utility function. We classify atomistic, 

expected utility maximizing individual agents based on the direction of their marginal 

trade, adopting the terms "Momentum" and "Contrarian" strategies, as will formally be 

presented below.  

New information about the real capital asset's value arrives periodically through a 

normally distributed noise tz . Due to the unobservability of other agents' marginal trade, 

we establish the equilibrium price through trade in a tatonnement clearing mechanism. 

Since we endogenously solve for the return generating process, we (and not the agents) 

can compare it with Merton's (1971) REE price process and specify positive or negative 

bubbles, as if an equivalent economy existed. Finally, we assume that there are no 

transaction costs, taxes, or other frictions.  

 

A. Agents 

Agents are classified by two generic strategies - Momentum (M), whereby an 

increase in wealth call for increasing the amount invested in shares, and Contrarian (C), 

according to which an increase in wealth result in reducing the amount invested in shares. 

Strategies and their magnitude depend on the specific HARA-type utility function 

parameters, as illustrated below.  

The PLM is a Geometric Brownian Motion with constant ̂  and ̂ , 

)ˆˆ(ˆ tztPPd tttt   . Under complete information and Rational Expectations (RE) 

the realized stock price moments must comply with the PLM. Let tPNS ttktk   ,,,  be the 

stock value held by individual agent k at t, where tkN ,  is the number of shares and tP  

their price.  NN
k

tk  ,  is the number of shares issued at the IPO. Define bond value 

held by the agent tBQD ttktk    ,,, , where Q is quantity of bonds and B their price (bond 

are available to all agents at unlimited supply), and let tktktk WS ,,, /  and 

tktktk WD ,,, /-1  . W is the wealth invested in stock and bond. All 0t  values 

represent IPO allocation. Thus  
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Such a wealth-conservation process4 is frequently presented as 

   tzWtrrWW ttktktktkttk   ˆ))ˆ((1ˆ
,,,,, .  (2) 

                                                           
4 Note that the last equality is equivalent to equation [10] in Merton's (1971) discrete time prolog to the 

continuous time model. 
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Samuelson (1969), Friend and Blume (1975) and Ross (1975) were the first to 

analyze such wealth accumulation processes in discrete-time while the continuous-time 

equivalent has been pioneered by Merton (1969, 1971 and 1973). Using a Taylor-series 

expansion to estimate )ˆ( , ttkWU   up to the second order, where U is a von-Neumann-

Morgenstern utility function, and applying the expectation operator, we get5 

    tWWUtrrWWUWUWUE tktktktktktktkttk 

22

,

2

,,,,,,,
ˆ)(

2

1
)ˆ()()()ˆ(  .  (3) 

The first order condition of (3) with respect to K,t  is, 

 0ˆ)()ˆ()(
)( 2

,

2

,,,,

,

 


tktktktktk

tk

WWUrWWU
d

UdE
. (4) 

Solving for tk , we get  
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and by using the Arrow-Pratt measure of relative risk aversion, 

)(

)(

,
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tktk

tkW
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WWU
R




 , we obtain the familiar relationship, similar in form to the models 

of the aforementioned authors, 

 
2
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R tkW

tk
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Let all individuals have a hyperbolic utility function in wealth of the following 

HARA type 

 


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We use this utility function since agents with different attitudes toward risk apply 

different dynamic strategies that are simple to obtain from (7) and are the building blocks 

of this model. This function can produce relative or absolute measures of risk aversion 

that both can be constant, decreasing or increasing in wealth. Table 1, in Appendix 1, 

summarizes this function's properties. By fixing tkWR ,,  in (6) we obtain the optimal 

investment rule for individual agent k,  

  kktttktttk

k

ttttkttkttk BQPNPNW 



   ,,

*
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*

,
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where kk   1 , 
2ˆ

ˆˆ





r
 .6  

                                                           
5 Note that neglecting changes higher than the second order when share prices follow log-normal 
distribution does not affect total demand for shares (specifically the demand for "hedging", elaborated in 
Merton (1973)).  
6 This type of utility functions embodies a displacement factor 

KK  that, if negative, represents a demand 
for "safety net", or insurance level to the agents' wealth. It implies replication of a call option by Constant 
Proportion Portfolio Insurance (CPPI) with a multiplier 1/  Mm   and a floor 0MM . 
Alternatively, agents who have a positive displacement factor essentially supply portfolio insurance to the 
market, thus mimicking a put option. A related notion has been presented by Leland (1980), Grossman and 
Vila (1989), Black and Perold (1992) Grossman and Zhou (1996) and others. 
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II. Marginal Supply and Demand Functions for Shares 

In models with atomistic investors, the stochastic price path is exogenous, 

observable, and unaffected by the agent's trade; thus, the equilibrium path is the 

stochastic process itself. However, in a partially observable economy we need an 

additional degree of freedom to solve the system, and that is provided by the marginal 

supply and demand functions for shares. 

By definition, the number of shares held by agent k at t+Δt is equal to the number 

of shares she held at t, plus an optimal, unknown at that stage, marginal trade over Δt, 

tkttkttk NNN ,,,   . Henceforth lowercase k, c, and m indicate individual variables 

while capital letters indicate group-wise aggregate equivalents. Aggregation by group is 

permissible since both risk parameters  and  are assumed identical group-wise. Note 

that while individual agents are atomistic, group-aggregates determine the share price 

endogenously. We omit the optimality symbol "*" in (8) from now until the end of this 

section, when we derive equilibrium, for simplicity of notation. 

 

A. The Contrarian Strategy 

Denote the aggregation of contrarian agents by subscript "C". By replacing 

ttCtCttC NNN   ,,,  in (8) and solving for ttCN  ,  we obtain 
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where tttCttC BQD   ,,

~
 and d

ttP   represents the marginal demand function for 

shares. Equation (9) can be rewritten as   
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that will satisfy the properties of a demand function if it maintains a strictly 

negative slope  0
)( ,



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d
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P
.7 The 

class of agents for whom the contrarian strategy is optimal is defined in Proposition 1: 

 

Proposition 1: 

Agents who adopt a Contrarian strategy must have taste parameters 
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~

 which imply that they have DRRA and DARA attitude 

                                                           
7 In this case, strict positive convexity will hold due to the first requirement as presented in Appendix 2. 
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toward risk if 
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Proof: See Appendix 2.  

 

B. The Momentum Strategy  

Let type M individual agents have a convex payoff schedule, being an investment 

rule whereby an increase in wealth result in an increasing exposure to shares in their 

portfolio, and vice versa. Following the procedure as detailed above, their marginal trade 

is  
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where s

ttP   is the marginal supply function for shares, which may be phrased,  
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A marginal supply function for shares must satisfy strictly positive slope 

0
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, although in our case strict 

convexity will hold. The taste parameters that satisfy a Momentum investment strategy 

comply with Proposition 2. 

 

Proposition 2: 

Individual agents who adopt a Momentum strategy must have a measure of risk 

aversion and displacement factor that satisfy 
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, which complies with 

DRRA and DARA attitude toward risk. Such agents will not have CRRA or CARA 

attitudes toward risk. 

 

Proof: See Appendix 3. 
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A graphical illustration of the marginal supply and demand functions derived 

above for shares is presented in Figure 1.8 In the following section we establish 

Walrasian equilibrium based on these marginal functions. 

 

Figure 1 

Marginal Supply and Demand Functions for Shares 
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Figure 1 describes graphically the marginal supply and demand functions for shares by 

agents M and C. An increase in price implies an increase in the number of shares by agent M 

( 0,  tMN ) and a decrease in the number of shares by agent C ( 0,  tCN ). Note that for a 

given price increase, the horizontal gap between both functions is the Bid-Ask spread. Finally note 

that the "supply" and "demand" tags were attached to these functions in order to correspond to 

their common representation in economics, yet their names should really been reversed. The 

values we used to draw these functions are:  

25 50 10,2.1 ,8.20 ,4.0 ,7.166 ,6.0ˆ  CMCMCCMM D,D,NN  

 

C. Equilibrium  

Though taste parameters remain fixed, aggregate marginal supply/demand change 

periodically due to changes in wealth allocation among agent groups. Individuals submit 

matching vectors of quantities and share prices, being their marginal supply/demand 

function, to a clearing agency assumed to operate in a tâtonnement procedure. The 

tâtonnement aggregates individual supply and demand functions and by clearing excess 

marginal demand set a new equilibrium price each period.9 We show that the resulting 

price path satisfies Pareto-optimality, yet rational-expectations equilibrium hold if the 

                                                           
8 These marginal supply and demand functions for shares also provide a basis for trade under a certain 

group of REE equilibria, among them the Merton (1971) model, yet, this issue is beyond the scope of this 

paper. 
9 Note that since the marginal functions are convex and defined on the same plane for all agents, 

aggregation is allowed across individual tastes.  
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PLM equal the ALM, being equivalent to Merton's (1971) price process. The Walrasian 

equilibrium conditions are,  
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By using tNNN tMtC   ,,,  in (9) and (11) and using the wealth-conserving 

budget constraint (1), we solve for the equilibrium price of shares *

ttP  , 
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Asterisks represent Pareto-optimal equilibrium values. Equation (14) translates to 

the continuous time equivalent when 0t ,  
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This equilibrium price is consistent with previous results, being a weighted-

average value of wealth managed by each group, weighted by the divergence of agents' 

measure of risk aversion K  from ̂ . Here however the displacement effect of CM    

plays an important role as it distinguishes strategies by marginal trade10. Comparing to 

popular utility functions, if 0 CM   then, by Table 1, (15) reduces to the CRRA 

case. It turns out that this solution for the HARA-type utility function is a generalization 

of Ross's (1975) and Friend and Blume's (1975) results for multiple agents based on 

CRRA utility functions. Further, if we assume that all agents have identical risk 

parameters, ( CMCM      ; ), (15) reduces to Merton's (1971) optimal 

investment rule with a single agent (ibid. equation [49]). The above-mentioned authors 

derived their results under the assumptions of exogenous, visible price process with price 

taking investors. (15) is similar in form to these results but different in meaning. On one 

hand it shows that the equilibrium share price process satisfy a Pareto-optimum asset 

allocation each period, regardless of the existence of REE. On the other hand, price path 

(15) is determined by the risk-aversion-weighted wealth of all agents M and C who hold 

the asset.  

 

III. Temporary deviations from REE - Bubbles 

We argue that if the assumption that all agents know all other's tastes and wealth 

is relaxed, than the Actual Law of Motion (ALM) will most likely be different than the 

PLM. It appears reasonable to assume that during IPO pre-sale and after trade begins for 

the share, agents are unable to deduce other's strategies from market prices thus non-REE 
                                                           

10 The equilibrium price in (14) exists and is unique since the utility functions from which the supply and 

demand functions were derived are monotone, and strictly concave over the entire domain. Existence and 

uniqueness can be proved by one of the fixed-point theorems for smooth, continuous functions, e.g., 

Debreu (in Theory of Value, 1959) or Kakutani (in McKenzie L., On Equilibrium in Graham's Model of 

World Trade, Econometrica, Vol. 22, pp. 147-161, 1954) 
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pricing might prevail. The divergence of the ALM from PLM will last longer if the share 

is of a new-technology since idiosyncratic risk makes dynamic learning a longer and 

more complex process. Such divergence will take the shape of a "boom" and "crash" 

pattern if the return and variability are serially correlated at each phase separately. In the 

following sub-sections we show that this will be the case for the "boom" phase, while the 

"crash" is discussed in the next section.  

 

A. Average Growth Rates 

In order to evaluate the realized average return as a function of the expected 

return when agent heterogeneity is unobservable, take the expected value of (14) and find 

its time differential,  
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Since tKD ,  corresponds to the optimal amount held in shares at each period, we 

replace it with KK
K

tKtK SD 












 1

ˆ,, , which is a reorganization of (8), being the 

agent's investment strategy, but now denoted in terms of the amount held in bonds. 

Replace the bond strategy into (16), multiply by t and divide through by tP  to obtain the 

actual return process 
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Rearrange terms to represent the above in proportional values and obtain 
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, 1 ,   . It turns out that *

tt   is a linear function of the risk-

premium over each time interval t. In order to satisfy REE,  ˆ*  tt  must hold, for 

which condition 1t  and 0 CM   are necessary and sufficient conditions as can 

be deduced from (17). Assuming zero displacements, if 1t  holds, the realized return 

will be an amplification of ̂  and if 1t  it will be dimmed, i.e., a negative mispricing. 

B. Volatility 

The variance of the actual share price process, (14) is  
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or, by replacing 
N

N tK

tK

,

,  , the instantaneous standard deviation of price change 

is 
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That is, the actual price change variability is a zero-constant linear function of the 

expected variability, with t  serving as the coefficient. If 1t  the ex-post price path 

will be identical to the ex-ante, satisfying REE; if 1t  the realization will be an 

amplification of the perceived variability and if 1t  the realized variability will be a 

dimmed multiple of ̂ .  

It is important to note that for both moments, ̂  and ̂ , a crowding-out effect 

intensifies the divergence of the realized moments from the perceived ones. This 

crowding-out has no limit under MDE but it is limited for the CDE equilibrium as 

presented in sub-section C below. The reason for the crowding-out under MDE is that 

agents M buy shares from agents C when 1t .11 By doing so, t  further increases 

above its previous level and the crowding-out (stochastically) intensifies in time. The 

higher the share price grows above the PLM price, agents M demand more shares but 

agents C have less to offer, thus the periodic equilibrium price closes at higher and higher 

levels, for declining trade volumes.  

C. Dynamic Stability 

This sub-section presents the technical properties of the dynamic evolution of the 

boom phase only, while reversion to REE is discussed in the next section. In general, 

dynamic stability properties of (the expected value of) a process like (14) are analyzed by 

adding its homogenous and particular solutions for a given seed, as it is a first order 

linear difference equation of the type BAPP tt  1 . Specifying the initial condition 0P  

(the IPO price) determines the solution sequence ,...,,, 3210 PPPP , where each term is 

found by ...,,tBAPP tt 321    1  . By a Theorem of linear first order difference 

equations, the solution for the sequence can be expressed in terms of 0P , A and B in the 

following way,  
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where, if 11  A  the solution sequence converges to 
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1
, otherwise it 

diverges, unless 0PPt  . Rearranging (14) to conform with the above layout yields 
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11 There is a secondary crowding-out effect that persists even when 1t

, yet with reasonable risk 

aversion parameters and equal initial wealth allocation it requires 10-20 years for that effect to mature. As 

noted above, our horizon for post-IPO bubbles is much shorter.  
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 thus 
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This model thus maintains three equilibria sets, depending on the IPO allocation 

between agents C and M: REE equilibria (no bubbles), Momentum Dominance Equilibria 

(MDE, positive bubbles) and Contrarian Dominance Equilibria (CDE, negative 

mispricing).   

1) If conditions 10  , and 0 CM   hold at IPO date, the expected ALM 

grows at the expected value of the PLM, resulting in REE. The REE price path can be 

constructed at a continuum of agents' wealth and taste combinations, all maintain 

ALM=PLM, but each with a different trade level. The analysis of trade is not discussed in 

this paper. 

2) Momentum Dominance Equilibria will evolve if inequality 10   holds (for 

0 CM  ) at IPO date, generating positive bubbles whereby 
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0 CM  , average return will change with the inequality sign. There is no upper limit 

to the potential divergence of the ALM from the PLM.  

3) Contrarian Dominance Equilibria will emerge if 10   holds at the IPO, 

generating negative mispricing with 
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 if 0 CM  . As in the previous case, 

if 0 CM  , the average return will increase/decline with the inequality sign, being a 

displacement to the price kernel. Unlike the MDE case however, here the ALM will 

converge in finite time to a steady state level given by the t=0 PLM 
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IV. Analysis of Equilibria and Crashes 

A. The Benchmark - REE Equilibria 

As a benchmark for discussing bubbles, it appears advantageous to analyze the 

conditions underlying REE equilibria. In order to satisfy REE, ex-ante estimates must 

hold also ex-post, i.e., both conditions 
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at (17) and (18) must hold. The first condition, 1
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be solved for M  since MC   1 . In this case the proportion of shares agents M hold 

out of total shares outstanding is a constant satisfying 
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which guaranties   ˆ*  tt . The second condition requires zero-sum 

displacement factors and, in combination with the first condition, assures   ˆ*  tt . 

Assuming conditions (19) hold, equation (20) shows that there is a continuum of risk-

aversion combinations that satisfy REE. This functional relationship between risk 

aversions and the market price for risk is graphically presented in Figure 2. One can 

observe that the REE line serves as a border-line that distinguishes between the MDE and 

CDE equilibria types. 

 

Figure 2 

Rational Expectations Equilibrium For  

Varying Levels of Risk Aversion and a Given  

 
 

For a given REE

M  there is a continuum of attainable REE equilibria that will prevail for 

given risk aversions and market price for risk, ̂ (here ̂ =1). Any combination between risk 

aversions and a given ̂  that lies in the area above the REE

M  (i.e., 10  ) line is a (temporary) 

Momentum Dominance Equilibrium (MDE), while below this line the (temporary) Contrarian 

Dominance Equilibrium (CDE) will prevail.  
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 one can see that if agents who buy shares at IPO 

are more risk-averse 0  will decline and if less risk-averse agents participate, the value 

of 0  increases.  



 24 

B. Bubbles - Discussion and Illustration 

By definition, bubbles are temporary phenomena throughout which prices diverge 

from REE. In this model it is sufficient to assume incomplete information about agent's 

tastes and wealth in order to obtain bubbles. It appears that IPO of new-technologies are 

best candidates to exhibit bubbles since buyers do not observe each other's tastes and 

wealth at IPO date. After the IPO agents can collect market data, deduce the moments 

that characterize the stochastic process and revise their strategy based on that 

information. With new-technology shares however the market data is noisy and might 

require a long sample, i.e., investment in new-technology assets imply the undertaking of 

uninsurable risk at least for some period post-IPO. IPOs of companies with existing 

technologies should not exhibit bubbles since agents can hedge the IPO share by holding 

assets who's covariability with the IPO asset is non-zero. As long as contingent claims for 

the new technology do not exist, the only way agents can insure the wealth they hold at 

the new-technology is by applying dynamic asset allocation strategies. The above 

Momentum and Contrarian strategies are such optimal strategies as they imply replication 

of option.  

Figure 3a illustrates the average growth rates of the three generic possibilities 

(REE, MDE and CDE) and Figure 3b presents an REE stochastic sample path, together 

with an amplification of it under MDE and a dimming version of the same under CDE.  
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                                   Figure 3b 
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Figure 3a presents expected and Figure 3b sample-paths of the three possible share price equilibria 

under marginal trade aggregation. In Figure 3b the three paths use the same vector of dzt, thus differences 

result from agent heterogeneity. If agents who apply a Momentum strategy dominate (MDE) the 

equilibrium path will be an amplification of the PLM. If Contrarian agents dominate, the realized path will 

be a deemed version of the PLM.  

 

C. Reversion of Bubbles to REE - Not Necessarily a "Crash" 

The reason for a "crash" or, more generally, reversion of the ALM to REE is 

intentionally not prescribed in this model in a formal manner. We focused on the 

reasoning of a divergence of ALM from PLM, which implies divergence from the strict 

formal definition of REE. Under this definition, RE assumes agents hold a complete 

knowledge about the economy - its structure (institutions, other agents, markets and 

changes in those) and value of parameters in the economy. Alternatively, agents must at 

least agree on a model of the economy and its parameters. For a stochastic model, 

agreement on the distribution of shocks is also required. Empirical economists who test 

for rationality use past data in order to estimate parameters of a model, or the economy's 

future state, implying that the experts themselves lack complete knowledge. It thus 

appear reasonable to assume that agents conduct procedures as if they were 

econometricians, which means some form of "bounded rationality", as suggested by 

Sargent (1993).   

If diversion of the ALM from PLM is due to incomplete information, as described 

in the model detailed above, the question is what forces govern a reversion to REE? 

There are two types of "add-on" models that can be supplemented to our model. The first 

one stems from the classic view of RE theory. It postulates reversion to REE through 

agent screening, a process under which agents who fail to accurately predict the PLM 

loose their wealth to agents who make accurate predictions and thus are driven out of the 

market in finite time. Since the accurate prediction is the RE solution, the RE pricing will 

prevail (see Sandroni, 2000 for a comprehensive discussion and proofs). Note that this 

view implies that an economy with non price-taking agents end-up with temporary 

deviation from REE, though not necessarily in a boom and crash pattern. If our "boom" 

reverts to REE based on that notion, the reversion need not be sudden ("crash").  

Second type of models comprises the dynamic learning approach. In general, 

these consider economic agents as econometricians who apply statistical tools on past 
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data and use the results to establish optimal future decisions. In that sense, this approach 

set a solid ground for empirical estimation of the above model. In most cases, dynamic 

learning models use Recursive Least Squares, whereby agents are assumed to run 

regressions on historic data and estimate the model parameters, testable ex-post by 

ARMA type processes.12 If the reversion to REE of post-IPO mispricing is based on that 

approach, than by the homogeneous information assumption all agents of a given type 

should apply the same rule once data become available. Since data is available to all 

simultaneously, a prompt adjustment, i.e., a crash, is unavoidable.  

 

V. Summary 

The model proposed above presents a simple technique to calculate asset prices, 

drawing elements from Merton (1971) and standard microeconomic supply/demand 

equilibrium. Its major advantages are its ability to specify a wide spectrum of dynamic 

equilibria; defining a many-to-one correspondence between measures or risk aversion and 

investment strategies and allowing empirical tests for temporary mispricing. It turns out 

that in-spite of homogenous information and rationality, there are infinite combinations 

of tastes (risk aversion) that result in the single REE path. In addition, we define two sets 

of temporary equilibria other than the REE. One is a set of Momentum Dominance 

Equilibria (MDE) in which variability and drift of a PLM are linearly amplified. The 

second is a set of Contrarian Dominance Equilibria (CDE) where the ALM exhibits linear 

dimmed variability and drift vs. the PLM.  

We achieve this variety of equilibria since we add a new degree of freedom to 

asset pricing, being marginal supply and demand functions for shares. We derive the 

marginal functions from investment strategies that are based on the agent's utility 

function. The marginal supply/demand functions look like regular microeconomic ones, 

and in particular they are twice differentiable and strictly convex over the entire domain. 

These functions may as well serve in the empirical study of price formation being 

normative bid and ask aggregate functions. 

The model is essentially a model of bubbles, while the reversion to REE may be 

gradual, if some agents who accurately predict the PLM drive the others out of the 

market. Or, it can end in a "crash" when information from post-IPO market prices makes 

it clear to all shareholders that the ALM has been constructed based on moments higher 

than those at the PLM. 

                                                           
12 Evans and Honkapohja, 2001 provide a comprehensive survey and detailed expositions of the subject 

from different perspectives. 
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Appendix 1 

Table 1 

Risk Aversion Properties of a HARA Type Utility Function 
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Source: Merton (1971). 

Table 1 shows that the HARA type utility function can produce absolute or relative measure of risk 

aversion, either can be decreasing, increasing or constant. We ignore increasing constant and relative risk 

aversions. 
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Appendix 2 

Proof of Proposition 1:  

A marginal demand function for shares must maintain a negative slope for (10),  
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Since the market price for risk ̂  is ex-ante positive and C  must be strictly positive to 

assure risk aversion, than the numerator must be positive, which implies 

CttCC D  /
~

,  . By restricting C , we implicitly limit C  as well. Solving the asset 

allocation problem (8), for 
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Thus, 0
~

,  CCttCD   imply  ˆC . Convexity of the marginal demand function 

for shares will be satisfied if the second derivative is positive,  
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Given the restrictions in (A1) and (A2), (A3) will be satisfied iff the denominator is 

positive, thus C
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N

N
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Q.E.D. 
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Appendix 3 

Proof of Proposition 2: 

Upward slope of the payoff schedule requires (12) to satisfy 0
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which implies MttMM D  /
~

,  . Assuming agents M are in aggregate net lenders, 

than M  must be strictly negative. In order to define the conditions on M , solve (8) for 

M

̂
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Based on MttMM D  /
~

,  , (A5) imply  ˆM . In order to assess convexity, the 

derivative of (A4) must be positive, 
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which implies the denominator must be negative, thus the stricter inequality 
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negative. In addition, by the assumption of risk aversion, M  must be positive, thus 
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