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Luisa Blanco*, Ji Gu, and James E. Prieger 

 

Appendix 1: Data Description 
This appendix provides more detail on the data used for the paper. Our sample includes 

data from 50 states and the District of Colombia between 1963 and 2007.  

Macroeconomic Data 

We obtained real Gross Domestic Product (GDP) for private industry by state,1 which we 

refer to as State Gross Domestic Product (SGDP), from the Bureau of Economic Analysis (BEA, 

2013a).2 The units are millions of 2005 dollars.  

We use Garofalo’s and Yamarik (2002) state-level panel dataset for the private capital 

stocks.3 Our measurement of the labor force is employment in the private sector, which is the 

sum of farm employment and private nonfarm employment. We obtained these data for the 

period 1969 to 2007 from the BEA (2013b).4 For the six missing years of data before 1969, we 

constructed analogous figures for private industry employment based on the BEA’s 

methodology.5  

                                                 
* Corresponding author: lblanco@pepperdine.edu. 
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For the human capital stock, we use the average years of schooling in the labor force.  

Average educational attainment is the most commonly used measure of human capital in the 

literature (Benhabib and Spiegel, 1994; Frantzen, 2000; Bronzini and Piselli, 2009; int. al.). We 

use data constructed by Turner et al. (2006), which covers the years 1963 to 2000. We 

supplemented this series with data from the US Census Bureau’s Current Population Survey 

(CPS) to extend coverage to 2007,6 resulting in a blended measure of human capital by state, 

1963-2007.  Unlike our other variables, which are for private industry, of necessity our measure 

of human capital includes the education of government workers. 

The labor and capital shares of GDP in the private sector are needed to calculate TFP.  

Labor and capital shares of GDP are computed following Gomme and Rupert (2004).  In 

particular, labor’s share of GDP in a state is found as the ratio of unambiguous labor income 

(UL) to the sum of UL and unambiguous capital income (UK) (both restricted to the private 

sector).  UL is compensation of employees and UK accounts for corporate profits, rental income, 

net interest income, and depreciation in the state.  To smooth the resulting UL series, a three-year 

moving average is taken. 7  The labor and capital shares are needed only when TFP is the 

dependent variable in the regressions; in most of our regressions the dependent variable is 

SGDP. 

R&D Data 

We use total R&D expenditure performed by private industry, which was obtained by 

state from the National Science Foundation’s Industrial R&D Information System (IRIS) (NSF, 

2013).8 These data are from a stratified random sample survey, the Survey of Industrial Research 

and Development, and thus are subject to sampling as well as measurement error, but the survey 

is designed to include large performers of R&D with certainty. 9   There were missing 
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observations for some states and years for two reasons.  In 18 out of the 45 years of our sample, 

the NSF collected no data.10  In other cases, the data are not reported if one firm did most of the 

R&D in the state that year. We log-linearly impute missing values, but only if they are missing 

for no more than three consecutive years.  Before imputation, 1,441 observations on R&D 

expenditure out of 2,295 year-state cells (51 states × 45 years) are available from NSF.  We 

impute 495 values, leaving 359 observations missing after imputation. The R&D expenditure is 

converted from nominal to real 2005 dollars with the BEA’s aggregate output price index for 

R&D investment.11 Table A.11 presents the average of R&D expenditure as percentage of GDP 

for our sample. 

To construct the R&D capital stock variable, we follow the perpetual inventory method 

used throughout the literature. Specifically, we estimate initial R&D capital stock with the 

formula I0/(g + δ), where I0 is the average investment of the first 3 years available, g is the 

average geometric growth rate of the level of investment in each series, and δ is the depreciation 

rate. 12  Following Coe and Helpman (1995) and Bronzini and Piselli (2009), we use a 5% 

depreciation rate for R&D.13 The final R&D capital stock variable is available for 83.1% of the 

possible 2,295 state-years in the sample.  States with many missing values are typically those 

with the smallest population.14  

In our analysis we also consider the spillover effect of R&D across states. To estimate the 

spillover effect, we create three measures of R&D performed in other states.  All take the general 

form of a weighted average: 𝑅𝑅𝑅𝑅_𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑖𝑖𝑖𝑖 = ∑ 𝑤𝑤𝑖𝑖𝑖𝑖𝑅𝑅𝑅𝑅𝑗𝑗𝑗𝑗𝑗𝑗≠𝑖𝑖 ; the difference is in the definition of 

the weights wij, although in all cases the weights sum to unity for each i.  First, we computed a 

distance-weighted (i.e., spatially lagged) measure, 𝑅𝑅𝑅𝑅_𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑅𝑅𝑖𝑖𝑖𝑖𝐷𝐷. In this approach we assume 

that an R&D dollar spent in more distant states has less of a spillover than does R&D performed 
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in adjacent states.   Weights wij are the inverse distances between state population centroids from 

US Census Bureau (2000). Thus, 𝑅𝑅𝑅𝑅_𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑖𝑖𝑖𝑖𝐷𝐷 is average domestic R&D performed outside the 

state, where the average is computed with spatial lags. As stated above, R&D data has many 

missing values. To overcome this difficulty, we rescale the weights for each year and states as 

necessary.  Rescaling the weights restores the correct magnitude to the weighted average, but 

does not fully get around the measurement error in out-of-state R&D created by the missing data.  

To introduce the notion of distance in economic geography, in our second definition of 

the average other-state R&D stock, 𝑅𝑅𝑅𝑅_𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑖𝑖𝑖𝑖𝑆𝑆 , we weight R&D in other states based on 

economic similarity and relevance of R&D across sectors (i.e., technological similarity). To 

construct this indicator, we calculated pairwise economic similarity weights 𝑆𝑆𝑖𝑖𝑖𝑖𝐺𝐺𝐺𝐺𝐺𝐺 for every pair 

of states i and j in our study. This is done on a year-by-year basis, although time subscripts are 

suppressed in the notation. The approach we take to create the economic similarity weight is the 

following. Let 𝑠𝑠𝑘𝑘
𝑗𝑗 be the share of state j’s economy in industry (group) k, measured as a fraction 

of SGDP.  The industry groups are defined by SIC for earlier years and NAICS for later years, 

and are at the two- and three-digit level.15  Then an initial similarity measure between states i and 

j is: 

𝑄𝑄𝑖𝑖𝑖𝑖𝐺𝐺𝐺𝐺𝐺𝐺 =  �𝑚𝑚𝑚𝑚𝑚𝑚�𝑠𝑠𝑘𝑘𝑖𝑖 𝑠𝑠𝑘𝑘
𝑗𝑗�

𝑘𝑘

 

 

(A1.1) 

 𝑄𝑄𝑖𝑖𝑖𝑖𝐺𝐺𝐺𝐺𝐺𝐺 is between zero and one, with the extremes meaning no overlap and full overlap 

(i.e., exactly matching proportions of industries in the composition of the two states’ economies). 

We next refine 𝑄𝑄𝑖𝑖𝑖𝑖𝐺𝐺𝐺𝐺𝐺𝐺 to control for the amount of R&D that each industry does.  For example, 

the industrial sectors of two states may match closely but in low-R&D performing industries 
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such as the service sector.  The R&D stocks in each state will be of less relevance to the other 

state than if the closely matching economies were heavily skewed toward R&D-important 

industries such as high-tech manufacturing.  Define weight 𝑆𝑆𝑘𝑘𝑅𝑅𝑅𝑅 to be the national-level industry 

weight based on how much of national total private R&D is performed in an industry k.  Then 

the final similarity measure is:                       

𝑆𝑆𝑖𝑖𝑖𝑖𝐺𝐺𝐺𝐺𝐺𝐺 =  �𝑆𝑆𝑘𝑘𝑅𝑅𝑅𝑅𝑚𝑚𝑚𝑚𝑚𝑚�𝑠𝑠𝑘𝑘𝑖𝑖 𝑠𝑠𝑘𝑘
𝑗𝑗�

𝑘𝑘

 (A1.2) 

While in theory 𝑆𝑆𝑖𝑖𝑖𝑖𝐺𝐺𝐺𝐺𝐺𝐺 ranges from zero to one, in our data the range is . From the similarity 

measure, weights 𝑤𝑤𝑖𝑖𝑖𝑖 are created proportional to 𝑆𝑆𝑖𝑖𝑖𝑖𝐺𝐺𝐺𝐺𝐺𝐺 but normalized to unity for each state i.  

Then 𝑅𝑅𝑅𝑅_𝑂𝑂𝑂𝑂ℎ𝑒𝑒𝑒𝑒𝑖𝑖𝑖𝑖 is defined as above:  ∑ 𝑤𝑤𝑖𝑖𝑖𝑖𝑅𝑅𝑅𝑅𝑗𝑗𝑗𝑗𝑗𝑗≠i . 

For the third definition of R&D performed in other states, 𝑅𝑅𝑅𝑅_𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑖𝑖𝑖𝑖𝐶𝐶 , at the 

suggestion of a referee we explored an alternative notion of geographic distance:  contiguity. In 

this case the weights come from a contiguity matrix in which wij is 1 for contiguous states i and j, 

and zero otherwise. Again, the weights are normalized to sum to unity for each state. 
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Appendix 2: Methodology  
Model 

For the derivation of the empirical model we use to estimate the impact of R&D on 

output and productivity, we follow much of the empirical growth literature (e.g., Coe and 

Helpman, 1995; Bronzini and Piselli, 2009) and assume a production function with Hicks-neutral 

TFP: 

 𝑌𝑌𝑖𝑖𝑖𝑖 = 𝑇𝑇𝑇𝑇𝑇𝑇𝑖𝑖𝑖𝑖𝐿𝐿𝑖𝑖𝑖𝑖𝛼𝛼𝐾𝐾𝑖𝑖𝑖𝑖𝛽𝛽  (A2.1) 

where i is a state index, and t is a year index. Y represents private sector output, L is private 

sector labor, K is the private sector physical capital stock; and TFP is Total Factor Productivity. 

We do not include in the production function the stock of public infrastructure, as Bronzini and 

Piselli (2009) do. In the case of the United States, we expect public infrastructure to be relatively 

homogenous across states, and we are unlikely to observe significant variation. Thus, we do not 

find necessary to include this variable in our estimation of the model. TFP is driven by 

technological change, which in turn is driven by R&D investment, human capital accumulation, 

and other factors.  Therefore we have that  

 𝑇𝑇𝑇𝑇𝑇𝑇𝑖𝑖𝑖𝑖 = 𝐴𝐴𝑖𝑖𝑖𝑖𝐻𝐻𝐻𝐻𝑖𝑖𝑖𝑖𝛾𝛾𝑅𝑅𝑅𝑅𝑖𝑖𝑖𝑖𝛿𝛿𝑅𝑅𝑅𝑅_𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑖𝑖𝑖𝑖𝜋𝜋 (A2.2) 

where 𝐴𝐴𝑖𝑖𝑖𝑖 is the “unexplained” technical change, 𝐻𝐻𝐻𝐻𝑖𝑖𝑖𝑖 is the human capital stock, and 𝑅𝑅𝑅𝑅𝑖𝑖𝑖𝑖 is the 

stock of R&D capital, all for state i in year t. We follow Bronzini and Piselli (2009) and include 

the spillover effect of R&D across states through RD_OTHER, the distance-weighted R&D stock 

from other states.  We parameterize unexplained technological change as the product of state- 

and year-specific fixed effects: 𝐴𝐴𝑖𝑖𝑖𝑖 = exp (𝜆𝜆𝑖𝑖 + 𝜏𝜏𝑡𝑡) . Substituting this expression for 𝐴𝐴𝑖𝑖𝑖𝑖  into 

Equation (A2.2), substituting the result into Equation (A2.1), and finally taking logs, we get: 
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 𝑦𝑦𝑖𝑖𝑖𝑖 = (𝜆𝜆𝑖𝑖 + 𝜏𝜏𝑡𝑡) + 𝛾𝛾ℎ𝑐𝑐𝑖𝑖𝑖𝑖 + 𝛿𝛿𝛿𝛿𝛿𝛿𝑖𝑖𝑖𝑖 + 𝜋𝜋𝑅𝑅𝑅𝑅_𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑖𝑖𝑖𝑖 + 𝛼𝛼𝑙𝑙𝑖𝑖𝑖𝑖+𝛽𝛽𝛽𝛽𝑖𝑖𝑖𝑖 + 𝜀𝜀𝑖𝑖𝑖𝑖 (A2.3) 

 𝑡𝑡𝑡𝑡𝑡𝑡𝑖𝑖𝑖𝑖 = (𝜆𝜆𝑖𝑖 + 𝜏𝜏𝑡𝑡) + 𝛾𝛾ℎ𝑐𝑐𝑖𝑖𝑖𝑖 + 𝛿𝛿𝛿𝛿𝛿𝛿𝑖𝑖𝑖𝑖 + 𝜋𝜋𝑅𝑅𝑅𝑅_𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑖𝑖𝑖𝑖 + 𝜂𝜂𝑖𝑖𝑖𝑖 (A2.4) 

where the lower-case letters stand for natural logarithm, and 𝜀𝜀𝑖𝑖𝑖𝑖  and 𝜂𝜂𝑖𝑖𝑖𝑖  are error terms. To 

account for the year effects 𝜏𝜏𝑡𝑡, we time-demean all variables (without explicitly changing our 

notation) from here on except where noted. 

We adopt alternate assumptions about α and β for purposes of comparison.  In our first 

econometric approach, in which log SGDP is the dependent variable (Equation (A2.3)), we make 

no assumptions about returns to scale and place no restrictions on α and β.  The second approach 

is based on Equation (A2.4). TFP is calculated for the dependent variable as  

𝑇𝑇𝑇𝑇𝑇𝑇𝑖𝑖𝑖𝑖 = 𝑌𝑌𝑖𝑖𝑖𝑖/(𝐿𝐿𝑖𝑖𝑖𝑖𝛼𝛼𝐾𝐾𝑖𝑖𝑖𝑖𝛽𝛽), 

where α and β are calculated directly from input shares in the SGDP accounts. This second 

method thus imposes constant returns to private inputs labor and capital, so that β = 1-α.   

Econometric Strategy 

We estimate the models in Equations (A2.3) and (A2.4) using our unbalanced panel with 

all available data between 1963 and 2007. The equations are in log levels instead of log changes 

in order to assess the long-run relationships in the data.  The levels of output, TFP, and the R&D 

stock also have the advantage of being much less sensitive to measurement error than their 

growth rates, which can bias estimation (Griliches and Hausman, 1986). However, such trending 

time series are likely to be integrated, and so we use estimation techniques appropriate for 

integrated and cointegrated data.  Based on the likely cointegration of the data, we estimate the 

parameters of the long-run relationships in Equations (A2.3) and (A2.4) using the Dynamic 

Ordinary Least Squares (DOLS) and the Pooled Mean Group (PMG) estimators. To enable 

unbiased estimation of the long-run relationships, in empirical application we also want to model 
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flexibly the short-run dynamics. Below we provide an econometric model incorporating short-

run dynamics, long-run relationships, and heterogeneity across panels that leads to the DOLS 

and PMG estimators. 

Begin with the autoregressive distributed lag (ARDL) form of Pesaran et al. (1999), 

denoted ARDL(p,q,q,…,q): 

𝑦𝑦𝑖𝑖𝑖𝑖 = �𝜆𝜆𝑖𝑖𝑖𝑖𝑦𝑦𝑖𝑖,𝑡𝑡−𝑗𝑗

𝑝𝑝

𝑗𝑗=1

+ �𝛿𝛿𝑖𝑖𝑖𝑖𝑥𝑥𝑖𝑖,𝑡𝑡−𝑗𝑗

𝑞𝑞

𝑗𝑗=0

+ 𝛼𝛼𝑖𝑖 + 𝜀𝜀𝑖𝑖𝑖𝑖 (A2.5) 

where xit is a vector of the regressors from Equation (A2.3) (or Equation (A2.4), depending on 

which specification is being estimated), αi is a fixed effect, and εit is white noise. The 

specification allows state-specific coefficients on the lagged dependent variable and regressors, 

allowing for dynamics that differ across units of the panel.   

Before estimating the unrestricted form of Equation (A2.5), we first restrict p = q = 0 and 

furthermore assume y and x are each I(1) and are cointegrated. Then θ = δi0 is the coefficient 

vector describing the long run (cointegrating) relationship between y and x.  Kao and Chiang 

(2001) show that (under certain conditions) a consistent estimate of θ, 𝜃𝜃�𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷, can be obtained 

from the following panel Dynamic OLS (DOLS) regression 

𝑦𝑦𝑖𝑖𝑖𝑖 = 𝜃𝜃′𝑥𝑥𝑖𝑖𝑖𝑖 + � 𝐶𝐶𝑖𝑖𝑖𝑖Δ𝑥𝑥𝑖𝑖,𝑡𝑡+𝑗𝑗

𝑟𝑟

𝑗𝑗=−𝑟𝑟

+ 𝛼𝛼𝑖𝑖 + 𝜈𝜈𝑖𝑖𝑖𝑖 (A2.6) 

where the lag/lead length 𝑟𝑟 → ∞ as 𝑇𝑇 →∞.  The DOLS model is restrictive because it requires 

all variables be I(1), y and x to be cointegrated, and the variance structure and short run dynamics 

to be identical across states.  Thus we use the DOLS model only for our initial estimations. 

Now return to the unrestricted Equation (A2.5).  Allow vector x to be I(0) or I(1), and 

assume that the order of integration of y is no more than the order of x.  However, we still 
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assume the long run relationship between y and x (captured by 𝜃𝜃) is common across states.  

Then, we can re-write Equation (A2.5) in error correction form: 

Δ𝑦𝑦𝑖𝑖𝑖𝑖 = 𝜙𝜙𝑖𝑖�𝑦𝑦𝑖𝑖,𝑡𝑡−1 − 𝜃𝜃′𝑥𝑥𝑖𝑖𝑖𝑖� + �𝜆𝜆𝑖𝑖𝑖𝑖∗ Δ𝑦𝑦𝑖𝑖,𝑡𝑡−𝑗𝑗

𝑝𝑝−1

𝑗𝑗=1

+ �𝛿𝛿𝑖𝑖𝑖𝑖∗Δ𝑥𝑥𝑖𝑖,𝑡𝑡−𝑗𝑗

𝑞𝑞−1

𝑗𝑗=0

+ 𝛼𝛼𝑖𝑖 + 𝜀𝜀𝑖𝑖𝑖𝑖 (A2.7) 

where θ and the starred coefficients are functions of the original parameters in Equation (A2.5).16  

Note that θ is again the long run relationship of interest. The short run dynamics of the dependent 

variable are governed by the deviation from the equilibrium long-run relationship. Parameter 𝜙𝜙𝑖𝑖, 

which governs the speed of adjustment to the long run relationship, varies across states and must 

be between zero and -2 for the existence of a long run relationship between the dependent 

variable and the control variables.  Under the assumptions of Pesaran et al. (1999), we have 

𝑦𝑦𝑖𝑖𝑖𝑖 = 𝜃𝜃′𝑥𝑥𝑖𝑖𝑖𝑖 + 𝜂𝜂𝑖𝑖𝑖𝑖, where for each i, ηit is stationary.17   

For the reasons described in the main text, we use the Pooled Mean Group (PMG) 

estimator developed by Pesaran et al. (1999) for most estimations. 18   The estimations are 

performed using the xtpmg add-on command (Blackburne and Frank, 2007) in Stata 13.1. 

Testing shows that a dynamic specification of the form ARDL(1,1,1,1,1,1) is appropriate.19  
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Appendix 3: Additional Results  
Tests for Nonstationarity and Order of Integration 

The DOLS estimator requires that all the variables be I(1), while the PMG estimator 

requires that the variables be I(1) or I(0), with the order of y no greater than the order of the 

regressors.  To test these assumptions, in Table A.2 we shows the results of two different unit 

roots tests for the variables included in our baseline model. There are many tests for panel unit 

roots available; we choose two that are appropriate for large N, large T asymptotics and allow 

unbalanced panels.  The unit root test of Im et al. (2003) has the null hypothesis that all panels 

are integrated and the alternative hypothesis that at least one panel is stationary. 20  The results 

for the variables before removing the time-means are in the first column of Table A.2, and they 

show that the human capital variable may not have unit roots in each state.  The conclusions are 

the same from the ADF-Fisher tests (Choi, 2001). 21  We next test the time-demeaned variables; 

results are in the middle pair of columns of Table A.2. We fail to reject the null hypothesis of 

nonstationarity for any variable except TFP at the 5% level, although the null is still rejected for 

human capital at the 10% level.  The ADF-Fisher tests fail to reject the null hypothesis for any 

variable.  There is thus mixed evidence for the nonstationarity of TFP. If TFP is I(0), the DOLS 

estimator will fail but the PMG estimator is still consistent.   

To make sure none of the variables is integrated at higher orders, we repeat the tests on 

the differenced form of the variables (results are in the last two columns of Table A.2).  The 

hypothesis of nonstationarity of all panels is convincingly rejected in each case. Thus, each series 

appears to be I(1) in each state, except possibly TFP.  In summary, the data appear to satisfy the 

assumptions of the DOLS and PMG estimators when SGDP is used as the dependent variable but 

satisfy only the assumptions of the PMG estimator with TFP as the dependent variable. 
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We also explore whether there is evidence of cointegration, as supposed by our 

estimation strategy. To test for cointegration we use a battery of residual-based tests for panel 

data from Pedroni (1999) and Kao (1999). We perform the cointegration test for the SGDP and 

TFP models using the baseline regression specification introduced in the next section. The results 

are shown in Table A.3.  The null hypothesis of no cointegration is rejected in the majority of 

cases overall, although the case is weaker for the TFP regression.  The parametric panel t-

statistic, which Örsal (2007) found to have the best size and power among the Pedroni statistics, 

rejects the null for all cases except the TFP regression with time-demeaned variables.22  Given 

that failure to reject the null may merely indicate low power of a test, we interpret the mixed 

results as providing reasonable evidence for the existence of long-run relationships among the 

data, except perhaps for TFP with time-demeaned variables. 

Baseline DOLS Estimation Results 

Kao et al. (1999) assess the econometric validity of using OLS for cointegrated data, and 

propose the use of dynamic OLS (DOLS) instead to avoid bias. We thus begin (but do not 

conclude) our empirical exploration with DOLS.  Table A.4 presents the DOLS estimates for the 

baseline estimations.23  The first two estimations, for SGDP and TFP, respectively, use the raw 

data without removing the time means.  The third DOLS estimation in Table A.4 is for SGDP 

and uses the time-demeaned data. Regardless of which DOLS estimation is considered, we find 

that there is evidence of a positive effect of R&D on SGDP in the long run from R&D performed 

in the state. The long-run own-elasticity for R&D varies from 0.013 to 0.061 among the 

estimations. These elasticities fall within the range of results for R&D own-elasticity estimates 

from country-level panel data studies cited in Hall et al. (2010).  
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The results for the impact from other-state R&D are mixed when using the DOLS 

estimator. In the first estimation, the other-elasticity is 0.050 and highly significant.  The second 

estimate is about the same magnitude but insignificant.  Recall that the dependent variable in this 

regression, TFP, may not be integrated within each state, which would lead to inconsistency in 

the DOLS estimates.  The third estimate, from the time-demeaned data, is negative, a puzzling 

result. There are some other unexpected results that may indicate that the assumptions of the 

DOLS model are not satisfied.  While capital and labor contribute positively and significantly to 

SGDP, the coefficient on capital is larger than (in column 1) or equal to (in column 3) the 

coefficient on labor.24 Furthermore, human capital is not statistically significant in the first 

estimation, which is unexpected given the great importance this variable has been found to have 

in other growth and TFP regressions (Mankiw et al., 1992; Coe et al,, 2009; Bronzini and Piselli, 

2009). The insignificance of human capital in the cointegrating relationship may be related to the 

evidence presented above that human capital may not in fact have a unit root in all panels before 

time-demeaning the variable.25 The varied performance of the DOLS approach leads us to focus 

our analysis on the less restricted PMG estimator.   

Baseline PMG Estimations  

The results for the main PMG estimations are found in the main text. Additionally, Table 

A.5 here reports the short-run coefficients omitted from Table 2 in the main text.  As notes in the 

main text, there are no significant short-run impacts of R&D on growth or TFP (apart from the 

short-run coefficient on ΔRD_OTHERS in column (3)).  Given our focus on the long-run impacts 

of R&D, we do not discuss the short-run results further. 
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PMG with Contiguity-Weighted Other States’ R&D Stock  

In the main text, we refer to an estimation in which the contiguity-weighted measure of 

the other-state R&D stock (RD_OTHERC) is used as a regressor instead of the distance-weighted 

measure RD_OTHERD.  The results are in column (4) of Table A.4 (for the long-run coefficients) 

and column (5) of Table A.5 (for the short-run coefficients).  The results are qualitatively similar 

to the results from the main estimation: own- and other-state R&D still have positive, highly 

statistically significant effects on SGDP. Compared to the main estimation results using 

RD_OTHERD, the own-R&D elasticity is somewhat higher and the other-state R&D elasticity is 

much lower.  The latter results is not surprising, given that spatial weighting based on contiguity 

ignores the presence of most R&D done elsewhere in the nation. R&D performed in non-

contiguous states is therefore an omitted variable, which can bias the estimates for the impact of 

RD_OTHER. 

Marginal Returns to R&D Investment by State 

Table 3 in the main text shows the marginal returns to R&D, the spillover ratio, and the 

spillover fraction for the various main estimations, where all figures are averaged over states.  

Table A.6 included here shows the state-by-state results for two of the main PMG estimations.  

Alaska and Hawaii are estimated to see less than 10% of total returns spill over to other states, 

while more than 90% of total returns leave the borders of Connecticut, Delaware, Idaho, 

Michigan, New Jersey, and New Mexico. Differences in the returns and spillovers across states 

come from differences in the spatial weights and the SGDP to R&D stock ratios of the states. 

Recall from a footnote in the main text that the marginal impact of own R&D is calculated as 

𝛿𝛿 ∑ 𝑎𝑎𝑖𝑖𝑟𝑟𝑖𝑖𝑖𝑖 , where 𝛿𝛿 is the own-elasticity for R&D, 𝑎𝑎𝑖𝑖 = 𝑌𝑌�𝑖𝑖/∑ 𝑌𝑌�𝑗𝑗𝑗𝑗  is the cross-state GDP weight, 

𝑟𝑟𝑖𝑖 = ∑ 𝑏𝑏𝑖𝑖𝑖𝑖𝑌𝑌𝑖𝑖𝑖𝑖/𝑅𝑅𝐷𝐷𝑖𝑖𝑖𝑖𝑡𝑡  is the average output to R&D ratio in the state, and 𝑏𝑏𝑖𝑖𝑖𝑖 = 𝑌𝑌𝑖𝑖𝑖𝑖/∑ 𝑌𝑌𝑖𝑖𝑖𝑖𝑠𝑠  is the 
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within-state GDP weight.  Thus, due to ri in the formulas, states with high R&D to SGDP ratios 

will, ceteris paribus, have lower marginal returns.  We see this with California and Washington 

state, for example; both have low marginal returns compared to other states.  The opposite is also 

true: states with low R&D/SGDP ratios, such as Alaska, South Dakota, and Wyoming, tend to 

have much higher calculated marginal returns.  These results are in accord with the notion that 

there are decreasing returns to R&D activity performed at any one point in time. 

Testing the Residuals for Autocorrelation 

Consistency of the PMG estimates requires that the error terms in equation (A2.3) from 

the main text be white noise.  In this section we test the residuals from the main baseline 

estimation (from column (1) of Table 2 in the main text) for autocorrelation. The first test 

statistic we compute is the Durbin-Watson (D-W) d statistic.26 As is so often the case with D-W 

testing, the d statistic falls into the inconclusive region between DL and DU (the upper and lower 

critical values) for most states.  However, in no case do we conclusively reject the null 

hypothesis of no first-order positive serial autocorrelation, and in four cases we conclusively fail 

to reject the null hypothesis.  There is thus no apparent evidence against the hypothesis of white 

noise from this test. 

The next test is portmanteau test (or q) test of Box and Pierce (1970) as refined by Ljung 

and Box (1978).  The null hypothesis of the test is that the regression residuals are white noise.  

We calculate four versions of the test statistic, with an increasing number of autocorrelations 

included in the test.  Of the 204 test statistics calculated, 10 have p-values less than 0.05, and 

only two have p-values less than 0.01.  Seven of the 10 statistics with p-values less than 0.05 

come from two states, Arkansas and Utah, and so we subject data from those states to greater 

scrutiny (even though Arkansas was one of the few states for which the D-W test conclusively 
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failed to reject the hypothesis of serial correlation).  Setting those two states aside for the 

moment, with this many test statistics the fact that there are three remaining with p-values less 

than 0.05 does not concern us.  A back of the envelope calculation shows that the probability of 

observing three or more Type I errors (false rejections) with a 5% test and this many test 

statistics is 99.7%.27  Thus we expect that these rejections are nothing more than Type I errors.28 

Returning now the possibility of serial correlation in the residuals for Arkansas and Utah, 

we next re-estimated the baseline specification allow an additional lag each for the dependent 

variable and the other regressors.  This raises the ARDL lag lengths to p = q = 2 (refer to 

equation (3) in the main text), but only for those two states.  This yields the estimation reported 

in column (4) of Table 4 in the main text; refer thence for discussion.  After estimation of the 

augmented regression we re-tested the residuals.  Since the regression now includes a lagged 

dependent variable as a regressor for those two states, we replace the D-W statistic with Durbin’s 

h statistic (refer to footnote 26), which is asymptotically valid for this situation.  The p-values for 

the tests for these two states are 0.521 and 0.146, and we do not reject the hypothesis that there is 

no serial correlation.  The eight q-statistics for these two states all have p-values above 0.05.  We 

thus conclude that even if the main baseline specification did suffer from autocorrelation in the 

residuals—for which the evidence is mixed—the augmented regression does not. Table A.7 

provides the Durbin-Watson d statistic and the Pormanteau Q-statistic p-values for lags 1-4 for 

each state. 
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Endnotes 

                                                 
1 The real GDP by state series from BEA are not available before 1987, and the chained indexes 
by state series are not available before 1977.  Therefore we used the US GDP implicit price 
deflator (from NIPA table 1.1.9, with change of basis from 2009 to 2005) for the US and applied 
it to the nominal state GDP series. 
2 The BEA changed its methodology in the state product accounts in 1997, switching from the 
SIC to the NAICS for classification of industry. Given that we do not break GDP down by 
industry, we ignore this change. 
3 We use their Net Private Capital Stock created for 1-digit SIC and NAICS industries. We also 
converted the basis of the series from 2000 to millions of chained 2005 dollars. 
4 Our labor force data comes from BEA Tables SA25 and SA25N, Total Full-Time and Part-
Time Employment by Industry. 
5 We calculate employment in private industry from 1963 to 1968 from various available but 
inconsistent sources in the following way. First, we collected government employment (GE) 
from the Statistical Abstracts of the US for each year (GE_SAt). These data do not match the 
figures available from BEA from 1969 on, but we assume that the implied growth rate in GE is 
correct.  Therefore, using 1969 as the reference year, we use the data from the Statistical 
Abstracts to calculate a government employment (GE) index series (GEIt = GE_SAt/GE_SA1969) 
for t = 1963,…,1969. Applying the index to the GE figure from BEA (GE_BEA) for 1969 creates 
a synthetic series for GE during 1963-1968 (GEt = GE_BEA1969/GEIt) that blends smoothly into 
the BEA series in 1969. We then calculate a similar index series for total employment (TE) for 
the period 1963-1969 (TEIt = TE_Bt/TE_B1969), where TE_B is total employment from Turner et 
al. (2006) (we thank Robert Tamura for sharing these data).  Applying the index to the BEA 
figure for total employment (TE_BEA) for 1969 creates a synthetic series for TE: TEt = 
TE_BEA1969/TEIt). Then we estimate private employment PE as the difference between total 
employment and government employment: PEt = TEt - GEt.  
6 From each year’s March supplement to the CPS, we constructed weighted estimates for each 
state of the number of years of education of individuals in the civilian labor force.  Schooling in 
the CPS (variable A_HGA) is interval censored, so our calculation assumed that “grades 1 to 4” 
= 3 years, “grades 5-6” = 5.5 years, “grade 12 but no HS diploma” = 11.5 years, “some college 
but no degree” = 13 years, associate college degrees = 14 years; bachelor’s degrees = 16 years; 
master’s degrees = 18 years, professional school degrees and PhDs = 20 years. We created an 
index series for each state, using methodology similar to that described in note 5 for the 
employment statistics.  The indices are used to create synthetic state-specific series that blend 
into the data from Turner et al. (2006) in 2000.  This procedure tacitly assumes that the growth in 
human capital after 2000 can be accurately estimated from the CPS.  Differences between the 
series before blending were generally small:  in 2000, the overlapping year, the average 
difference was 1.1% with an interquartile range of 0 to 3.5%. 
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7 UL is taken directly from BEA NIPA data for the private sector.  UK is calculated using the 
national income accounting identity UK = (private sector GDP) – (private sector UL + private 
sector ambiguous labor income), where ambiguous labor income = taxes less subsidies + 
proprietor income (Gomme and Rupert, 2004). All data are from the state accounts.  The three-
year moving average is applied to each state’s UL series before computing UK. 
8 The measure includes all expenditure on R&D performed by industry, regardless of the source 
of funds.  Late data are from Table 60, “Funds for and companies performing industrial R&D in 
the United States, by state and source of funds: 1999–2007.” Table H-21, “Total (company, 
Federal, and other) funds for industrial R&D performance, by State for selected years: 1963–98” 
supplies earlier years. 
9 For example, by the end of the period all companies among those known to conduct R&D in 
any of the previous five survey years and that spent $3 million or more on R&D were included 
with certainty.  Details on the complex sampling scheme are in Appendix A to NSF (2011). 
10 Data are missing for even years from 1964-1996 and for 2000. 
11  The BEA R&D Satellite Account for 2010, available at http://www.bea.gov/rd/xls 
/1959_2007_rd_data_2010RDSA.xls, contains alternatives for indexing R&D investment.  
Copeland et al. (2007) describers the aggregate output price index that we use as “a second-best 
solution that reflects implementation challenges and data limitations” (p.4).    
12 In states with a break in the time series after imputation, the calculation of the stock variable 
begins anew after the break (i.e., data from before the break are not used). 
13 Hall et al. (2010) report that the empirical literature typically finds that estimates of the effects 
of R&D are insensitive to different depreciation rates in constructing the R&D stock.  
14 The states with missing observations for R&D stock (with the number missing, out of 45 years 
possible, in parentheses) are: Montana (32), North Dakota (32), Idaho (30), Alaska (24), 
Vermont (23), Delaware (22), South Dakota (22), New Hampshire (21), West Virginia (21), 
Hawaii (20), Maine (17), New Mexico (16), Oregon (16), Washington (16), Nevada (12), DC 
(11), Nebraska (9), Wyoming (9), Georgia (8), Virginia (8), California (7), Mississippi (7), and 
Kentucky (5). 
15 The industry groups were chosen to match as closely as possible the available data from NSF 
on R&D performed by industry. 
16 In particular, 𝜃𝜃 = ∑ 𝛿𝛿𝑖𝑖𝑖𝑖

𝑞𝑞
𝑗𝑗=0 /(1 − ∑ 𝜆𝜆𝑖𝑖𝑖𝑖

𝑝𝑝
𝑗𝑗=1 ) and is assumed in the PMG model to be constant 

across i. 
17 Recall that we time-demean all variables to account for trends not otherwise explained by the 
model, which further ensures the stationarity of ηit. 
18 For more detailed description of the structure of the PMG model, refer to Pesaran et al. (1999) 
and Blackburne and Frank (2007). 
19 Lag length was selected based on the Schwarz Bayesian Information criterion (SBIC). We 
performed the test for each state in the sample and select the lag length that is appropriate in 

http://www.bea.gov/rd/xls%20/1959_2007_rd_data_2010RDSA.xls
http://www.bea.gov/rd/xls%20/1959_2007_rd_data_2010RDSA.xls
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most states (we use the mode of the lag length test from all states, which was equal to zero 
according to the SBIC). 
20 In this test we use a number of lags chosen by the AIC criterion in constructing the test 
statistic, to account for serial correlation.  The test was performed using the xtunitroot ips 
command in Stata 13 with the “lags(aic 5)” option.  
21 Instead of constructing a single test statistic, the ADF-Fisher test instead combines the p-
values from separate tests on each panel into an omnibus p-value (Choi, 2001). The test was 
performed using the xtunitroot fisher command in Stata 13 with five lags for serial correlation. 
22 We note that the same tests that fail to reject at the 5% level in the baseline R&D regressions 
of Bronzini and Piselli (2009) (the panel v-, and group and panel ρ-statistics) also fail to reject 
here.  They nevertheless concluded, as we do here, that the evidence is for the existence of long-
run relationships among the data. 
23 The number of leads and lags in each DOLS estimation was selected based on the SBIC. 
24 The conventional wisdom (and much empirical evidence) holds that labor’s share of output is 
about twice capital’s share of output in the US economy. 
25 The DOLS estimates shown in Table A.4 are similar to results found when we use the Fully 
Modified Ordinary Least Squares (FMOLS). FMOLS, a competing estimator to DOLS, has been 
found to perform worse than DOLS when estimating cointegrated panel regressions, and we do 
not report the results here.  See Baltagi (2008, p.299) for a discussion of the DOLS and FMOLS. 
26 The D-W test is biased if the lagged dependent variable appears as a regressor, as may appear 
to the reader to be the case in the ARDL specification (equation (3) in the main text). However, 
under the lag lengths chosen by the SBIC for the main specifications this is not the case. 
27 Assuming that the statistics are independent random variables for simplicity, the probability 
that zero, one, or two statistics have p-values less than 0.05 can be readily computed.  Then 
subtracting the sum of the probabilities from one yields the probability that three or more tests 
out of the 196 will falsely reject.  Further details of the calculation are available upon request. 
28 In fact, the same back of the envelope calculation shows that the probability of observing 10 
false rejections out of all 204 tests is 57.1%.  Nevertheless, we will not assume that the rejections 
are meaningless for Arkansas and Utah.  
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Table A.1: Average of R&D expenditure as percentage of GDP, 1963- 2007 

State Code 
R&D 

intensity State Code 
R&D 

intensity State Code 
R&D 

intensity 

Alabama 1.1 Kentucky 0.5 N. Dakota 0.6 

Alaska 0.1 Louisiana 0.4 Ohio 1.8 

Arizona 1.9 Maine 0.5 Oklahoma 0.7 

Arkansas 0.3 Maryland 1.8 Oregon 1.6 

California 3.6 Massachusetts 4.0 Pennsylvania 2.2 

Colorado 1.9 Michigan 4.3 Rhode Island 1.8 

Connecticut 3.9 Minnesota 2.2 S. Carolina 0.8 

Washington, DC 2.9 Mississippi 0.2 S. Dakota 0.3 

Delaware 0.7 Missouri 1.5 Tennessee 1.1 

Florida 1.1 Montana 0.3 Texas 1.3 

Georgia 0.7 Nebraska 0.4 Utah 1.5 

Hawaii 0.3 Nevada 0.8 Vermont 1.9 

Idaho 2.8 N. Hampshire 2.3 Virginia 1.2 

Illinois 1.6 New Jersey 3.7 Washington 3.8 

Indiana 1.8 New Mexico 3 W. Virginia 0.8 

Iowa 1.0 New York 1.6 Wisconsin 1.3 

Kansas 1.2 N. Carolina 1.2 Wyoming 0.2 

Source: National Science Foundation (2013). 
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Table A.2: P-values from panel tests for unit roots  

 Variables in Levels 
 Time-Demeaned Variables  

in Levels 
Time-Demeaned Variables  

in Differences 

 

Im, Pesaran, & 
Shin Test 

ADF-Fisher 
Test 

 Im, Pesaran, & 
Shin Test 

ADF-Fisher 
Test 

Im, Pesaran, & 
Shin Test 

ADF-Fisher 
Test 

Ln(SGDP) 1.000 1.000  0.308 0.205 0.000 0.000 

Ln(TFP) 0.999 1.000  0.020 0.258 0.000 0.000 

Ln(Labor force) 0.100 1.000  0.845 0.358 0.000 0.000 

Ln(Physical capital) 1.000 0.959  0.866 0.919 0.000 0.000 

Ln(Human capital) 0.000 0.000  0.071 0.750 0.000 0.000 

Ln(R&D Stock) 1.000 1.000  0.997 0.345 0.000 0.000 

Notes: Figures are p-values from the test stated in the column subheading, where the variable tested is given in the row heading and is 
in levels or differences as specified in the column superheading.  The specified lags for serial correlation in the test statistics is five.  
The null hypothesis of each test is that each time series in the panel contains unit roots (i.e., that each states’ time-series is non-
stationary), while the alternative hypothesis is that at least one time series in the panel is stationary.  For the ADF-Fisher test, an 
inverse chi-squared transformation that is suitable for large N is used to combine the p-values from the panels (Choi, 2001).  
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Table A.3: P-values from panel tests for cointegration  

 Non-Time-Demeaned Variables  Time-Demeaned Variables 

Specification: SGDP TFP  SGDP TFP 

Pedroni tests      

Panel v-statistic 0.239 0.078  0.448 0.750 

Panel ρ-statistic 0.942 0.934  0.949 0.997 

Panel t-statistic (nonparametric) 0.000 0.547  0.008 0.997 

Panel t-statistic (parametric) 0.000 0.004  0.000 0.755 

Group ρ-statistic 1.000 1.000  0.996 1.000 

Group t-statistic (nonparametric) 0.000 0.562  0.000 0.999 

Group t-statistic (parametric) 0.000 0.000  0.000 0.006 

Kao Tests      

ADF statistic 0.000 0.000  0.000 0.000 

tADF statistic 0.000 0.000  0.000 0.000 

Figures are the p-values from the regression-based hypothesis tests for no cointegration from Pedroni (1999) and Kao (1999); refer 
to these sources for the formulae for the test statistics.  The regression specification is the baseline specification used in our 
analysis.  Rejection of the null in favor of the alternative hypothesis of cointegration is evidence in favor of the existence of long 
run relationships among the regressors.  Lag length selection is based on AIC; results based on SIC were nearly identical. 
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Table A.4: DOLS estimations and PMG estimation with contiguity-weighted other-state 
average R&D stock 

Dependent Variable: SGDP TFP SGDP SGDP 
Estimator: DOLS DOLS DOLS PMG 
  (1) (2) (3) (4) 
Long run coefficients     
R&D Stock 0.032*** 0.061*** 0.013*** 0.083*** 

(0.006) (0.011) (0.005) (0.007) 
Other States’ R&D Stock 

(RD_OTHERD, weighted 
by distance) 

0.050*** 0.041 -0.086**  

(0.016) (0.027) (0.034) 
 

Other States’ R&D Stock 
(RD_OTHERC, weighted 
by contiguity) 

   0.037*** 

   
(0.009) 

Years of Schooling -0.009 0.843*** 0.423*** 1.246*** 
(0.077) (0.124) (0.128) (0.156) 

Physical Capital Stock 0.648***  0.566*** 0.423*** 
(0.033)  (0.039) (0.038) 

Labor Force 0.484***  0.571*** 0.615*** 
(0.030)  (0.037) (0.039) 

Error Correction (ϕi), averaged 
across states 

   -0.162*** 
   (0.024) 

All variables time-demeaned No No Yes Yes 
State fixed effects Yes Yes Yes Yes 
State-specific short-run dynamics 

& error variances 
No No Yes Yes 

No. States 51 51 51 49 
No. Obs. 1,615 1,762 1,619 1,789 
R-squared 0.999 0.909 0.999  
Log Likelihood    4,484 

***, **, and * denotes significance at 1%, 5%, and 10% level, respectively. 
Figures are the long-run coefficients and standard errors (in parentheses) from pooled mean-
group estimation.  Figures shown for the error correction term are for the average of the state-
specific estimates of  𝜙𝜙𝑖𝑖.  The short run coefficients are omitted in the table.  Estimations include 
observations for 44 years during the period 1963-2007. Estimations include a minimum of 12 
observations per state and a maximum of 44, with an average number of observations per state of 
36.  
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Table A.5: Baseline PMG estimation results (short run coefficients) 

Dependent Variable: SGDP TFP SGDP SGDP SGDP 

  (1) (2) (3) (4) (5) 

Short run coefficients      

Δ R&D Stock -0.007 -0.012 0.000 0.014 -0.014 

(0.012) (0.023) (0.012) (0.014) (0.009) 

Δ Other States’ R&D Stock  
(Δ RD_OTHERD, weighted by 
distance) 

-0.778 -0.951  -0.551  

(0.472) (0.535)  (0.307)  

Δ Other States’ R&D Stock  
(Δ RD_OTHERS, weighted by 
economic similarity) 

  -0.268** 0.613  

  (0.067) (0.993)  

Interaction term, 
Δ(RD_OTHERD  
×RD_OTHERS)  

   7.462  

   (9.039)  

Δ Other States’ R&D Stock  
(Δ RD_OTHERC, weighted by 
contiguity) 

    -0.106 

    (0.069) 

Δ Years of Schooling -0.269* -0.257* -0.237 -0.258* -0.164 

(0.111) (0.121) (0.125) (0.118) (0.108) 

Δ Physical Capital Stock 0.304**  0.264** 0.305** 0.305** 

(0.033)  (0.043) (0.042) (0.040) 

Δ Labor Force 0.621**  0.723** 0.615** 0.701** 

(0.076)  (0.106) (0.067) (0.078) 

Constant -0.001 0.003 -0.007 -0.006 -0.005 

(0.005) (0.007) (0.007) (0.006) (0.006) 

Table notes:  For the long run coefficients, number of observations, and log likelihoods from 
these estimations, refer to Table 2 in the main paper for columns (1) to (4).  For column (5), refer 
to column (4) of Table A.4 
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Table A.6: Marginal returns to R&D investment, within state and spillovers, by state 

 
Estimation (1) from Table 2 in the Main Text:   

Distance weighted other-state R&D stock 
 

Estimation (3) from Table 2 in the Main Text:   
Economic-similarity weighted other-state R&D stock 

 Within-
State 

Marginal 
Return 

Marginal 
Return 

Spillovers 
Spillover  

Ratio 
Spillover 
Fraction 

 Within-
State 

Marginal 
Return 

Marginal 
Return 

Spillovers 
Spillover  

Ratio 
Spillover 
Fraction 

 
(1) (2) (2) ÷ (1) 

(2) ÷ 
[(1) + (2)] 

 
(1) (2) (2) ÷ (1) 

(2) ÷ 
[(1) + (2)] 

Alabama 0.689 2.332 3.386 0.772  1.289 4.379 3.398 0.773 

Alaska 9.712 0.655 0.067 0.063  18.175 1.452 0.08 0.074 

Arizona 0.490 2.078 4.240 0.809  0.917 4.645 5.064 0.835 

Arkansas 6.788 2.363 0.348 0.258  12.704 4.341 0.342 0.255 

California 0.230 0.866 3.758 0.790  0.431 4.316 10.006 0.909 

Colorado 0.473 1.860 3.935 0.797  0.885 4.399 4.972 0.833 

Connecticut 0.210 2.612 12.412 0.925  0.394 5.257 13.35 0.93 

Delaware 0.245 2.793 11.401 0.919  0.459 3.147 6.863 0.873 

Wash., DC 1.088 3.173 2.917 0.745  2.036 1.749 0.859 0.462 

Florida 0.748 1.379 1.842 0.648  1.401 3.843 2.743 0.733 

GA 1.476 2.192 1.485 0.598  2.762 4.156 1.504 0.601 

Hawaii 7.554 0.499 0.066 0.062  14.137 1.563 0.111 0.1 
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Table 
continued 

Estimation (1) from Table 2 in the Main Text:   
Distance weighted other-state R&D stock 

 
Estimation (3) from Table 2 in the Main Text:   

Economic-similarity weighted other-state R&D stock 

 Within-
State 

Marginal 
Return 

Marginal 
Return 

Spillovers 
Spillover  

Ratio 
Spillover 
Fraction 

 Within-
State 

Marginal 
Return 

Marginal 
Return 

Spillovers 
Spillover  

Ratio 
Spillover 
Fraction 

 
(1) (2) (2) ÷ (1) 

(2) ÷ 
[(1) + (2)] 

 
(1) (2) (2) ÷ (1) 

(2) ÷ 
[(1) + (2)] 

Idaho 0.167 1.818 10.905 0.916  0.312 3.766 12.067 0.923 

Illinois 0.519 2.350 4.526 0.819  0.972 4.904 5.046 0.835 

Indiana 0.423 2.778 6.566 0.868  0.792 5.3 6.693 0.87 

Iowa 0.805 2.299 2.855 0.741  1.507 4.78 3.172 0.76 

Kansas 0.909 2.214 2.435 0.709  1.702 4.585 2.695 0.729 

Kentucky 1.942 2.602 1.340 0.573  3.634 4.744 1.306 0.566 

Louisiana 1.358 2.054 1.512 0.602  2.542 3.226 1.269 0.559 

Maine 2.609 1.599 0.613 0.380  4.882 3.718 0.762 0.432 

Maryland 0.434 2.800 6.448 0.866  0.813 4.133 5.086 0.836 

Massachusetts 0.211 1.957 9.274 0.903  0.395 5.156 13.055 0.929 

Michigan 0.186 2.265 12.196 0.924  0.347 4.14 11.914 0.923 

Minnesota 0.395 1.876 4.754 0.826  0.738 4.408 5.97 0.857 

Mississippi 7.775 2.334 0.300 0.231  14.55 4.577 0.315 0.239 
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Table 
continued 

Estimation (1) from Table 2 in the Main Text:   
Distance weighted other-state R&D stock 

 
Estimation (3) from Table 2 in the Main Text:   

Economic-similarity weighted other-state R&D stock 

 Within-
State 

Marginal 
Return 

Marginal 
Return 

Spillovers 
Spillover  

Ratio 
Spillover 
Fraction 

 Within-
State 

Marginal 
Return 

Marginal 
Return 

Spillovers 
Spillover  

Ratio 
Spillover 
Fraction 

 
(1) (2) (2) ÷ (1) 

(2) ÷ 
[(1) + (2)] 

 
(1) (2) (2) ÷ (1) 

(2) ÷ 
[(1) + (2)] 

Missouri 0.443 2.315 5.224 0.839  0.829 5.095 6.143 0.86 

Montana 2.546 1.600 0.628 0.386  4.765 1.967 0.413 0.292 

Nebraska 4.431 2.097 0.473 0.321  8.292 4.436 0.535 0.349 

Nevada 2.666 3.389 1.271 0.560  4.99 2.028 0.406 0.289 

N. Hampshire 0.642 2.180 3.395 0.772  1.202 4.494 3.74 0.789 

New Jersey 0.198 2.755 13.917 0.933  0.37 4.613 12.453 0.926 

New Mexico 0.113 1.955 17.291 0.945  0.212 3.112 14.708 0.936 

New York 0.385 2.242 5.831 0.854  0.72 3.952 5.491 0.846 

N. Carolina 0.836 2.176 2.603 0.722  1.565 4.611 2.947 0.747 

N. Dakota 2.924 1.646 0.563 0.360  5.472 2.839 0.519 0.342 

Ohio 0.378 2.423 6.412 0.865  0.707 5.179 7.322 0.88 

Oklahoma 0.945 2.258 2.389 0.705  1.769 4.412 2.495 0.714 

Oregon 1.165 1.728 1.483 0.597  2.181 4.038 1.852 0.649 

Pennsylvania 0.323 2.484 7.694 0.885  0.604 4.975 8.236 0.892 
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Table 
continued 

Estimation (1) from Table 2 in the Main Text:   
Distance weighted other-state R&D stock 

 
Estimation (3) from Table 2 in the Main Text:   

Economic-similarity weighted other-state R&D stock 

 Within-
State 

Marginal 
Return 

Marginal 
Return 

Spillovers 
Spillover  

Ratio 
Spillover 
Fraction 

 Within-
State 

Marginal 
Return 

Marginal 
Return 

Spillovers 
Spillover  

Ratio 
Spillover 
Fraction 

 
(1) (2) (2) ÷ (1) 

(2) ÷ 
[(1) + (2)] 

 
(1) (2) (2) ÷ (1) 

(2) ÷ 
[(1) + (2)] 

Rhode Island 0.917 2.642 2.880 0.742  1.717 4.349 2.533 0.717 

S. Carolina 1.127 2.327 2.064 0.674  2.11 4.409 2.09 0.676 

S. Dakota 10.417 1.891 0.182 0.154  19.496 3.247 0.167 0.143 

Tennessee 0.672 2.428 3.614 0.783  1.257 4.913 3.908 0.796 

Texas 0.721 1.537 2.132 0.681  1.349 4.562 3.381 0.772 

Utah 0.535 2.043 3.819 0.792  1.001 4.372 4.368 0.814 

Vermont 0.603 1.961 3.254 0.765  1.128 4.639 4.114 0.804 

Virginia 0.804 2.347 2.918 0.745  1.505 4.44 2.949 0.747 

Washington 0.265 1.394 5.258 0.840  0.496 3.584 7.223 0.878 

W. Virginia 1.269 2.616 2.061 0.673  2.375 3.566 1.501 0.6 

Wisconsin 0.613 2.334 3.806 0.792  1.148 4.818 4.198 0.808 

Wyoming 15.199 1.857 0.122 0.109  28.443 1.87 0.066 0.062 
Notes:  Marginal returns in the first two columns are calculated as weighted averages:  figures are calculated first at the state and year level and then are averaged 
across years (weighted by SGDP in the state across years).  Figures in columns (1) and (2) are expressed as the one-time marginal returns to a $1 increase in the 
own-state R&D stock.  Estimates are based on the estimated elasticities from the PMG estimation in Table 2 given in the supercolumn headings. The spillover 
ratio and the spillover fractions are calculated using the formula in the column heading. 



 

31 

Table A.7: Testing for autocorrelation by state 

  

Durbin-
Watson 

d statistic  

Portmanteau Q-statistic (p-values) 

State T 

 

1 lag 2 lags 3 lags 4 lags 

Alabama 44 1.706† 

 

0.986 0.825 0.475 0.640 

Alaska 20 1.986† 

 

0.982 0.422 0.477 0.627 

Arizona 44 1.898† 

 

0.770 0.704 0.872 0.592 

Arkansas 44 2.310‡ 

 

0.184 0.040 0.026 0.035 

California 37 2.230† 

 

0.458 0.745 0.895 0.425 

Colorado 44 1.825† 

 

0.574 0.346 0.091 0.148 

Connecticut 44 1.642† 

 

0.220 0.453 0.663 0.732 

Delaware 21 2.030† 

 

0.855 0.970 0.963 0.794 

Wash., DC 32 2.093† 

 

0.710 0.920 0.762 0.503 

Florida 44 1.560† 

 

0.146 0.286 0.387 0.364 

Georgia 36 1.900† 

 

0.804 0.967 0.994 0.800 

Hawaii 23 1.309† 

 

0.464 0.150 0.281 0.425 

Idaho 14 1.883† 

 

0.840 0.035 0.057 0.064 

Illinois 44 1.699† 

 

0.318 0.424 0.625 0.556 

Indiana 44 2.199† 

 

0.370 0.576 0.443 0.464 

Iowa 44 2.413‡ 

 

0.116 0.259 0.423 0.565 

Kansas 44 2.311‡ 

 

0.163 0.167 0.234 0.367 

Kentucky 38 2.106† 

 

0.575 0.065 0.140 0.242 

Louisiana 44 1.451† 

 

0.076 0.118 0.194 0.315 

Maine 26 1.341† 

 

0.237 0.351 0.415 0.371 

Maryland 44 2.380‡ 

 

0.152 0.163 0.270 0.387 
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Durbin-
Watson 

d statistic  

Portmanteau Q-statistic (p-values) 

State T 

 

1 lag 2 lags 3 lags 4 lags 

Massachusetts 44 1.734† 

 

0.416 0.663 0.844 0.749 

Michigan 44 1.848† 

 

0.616 0.721 0.836 0.613 

Minnesota 44 1.889† 

 

0.795 0.904 0.618 0.463 

Mississippi 36 1.831† 

 

0.885 0.459 0.669 0.813 

Missouri 44 1.812† 

 

0.555 0.826 0.921 0.885 

Montana 12 2.030† 

 

0.792 0.922 0.982 0.672 

Nebraska 35 2.188† 

 

0.312 0.594 0.399 0.427 

Nevada 31 1.222† 

 

0.073 0.178 0.254 0.206 

N. Hampshire 22 2.132† 

 

0.162 0.106 0.148 0.251 

New Jersey 44 1.768† 

 

0.429 0.700 0.329 0.472 

New Mexico 27 1.652† 

 

0.475 0.759 0.906 0.789 

New York 44 1.885† 

 

0.736 0.185 0.328 0.486 

N. Carolina 44 1.845† 

 

0.653 0.322 0.292 0.194 

N. Dakota 12 2.374† 

 

0.258 0.427 0.358 0.421 

Ohio 44 1.897† 

 

0.731 0.752 0.901 0.853 

Oklahoma 44 2.022† 

 

0.925 0.297 0.166 0.259 

Oregon 27 2.379† 

 

0.262 0.041 0.044 0.074 

Pennsylvania 44 2.185† 

 

0.451 0.476 0.396 0.542 

Rhode Island 44 1.690† 

 

0.352 0.228 0.197 0.148 

S. Carolina 44 1.624† 

 

0.331 0.516 0.679 0.770 

S. Dakota 22 1.622† 

 

0.385 0.402 0.386 0.191 

Tennessee 44 1.937† 

 

0.878 0.533 0.722 0.844 
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Durbin-
Watson 

d statistic  

Portmanteau Q-statistic (p-values) 

State T 

 

1 lag 2 lags 3 lags 4 lags 

Texas 44 1.625† 

 

0.202 0.434 0.522 0.669 

Utah 44 1.266† 

 

0.015 0.005 0.009 0.010 

Vermont 20 1.767† 

 

0.687 0.820 0.939 0.982 

Virginia 36 2.157† 

 

0.604 0.631 0.613 0.750 

Washington 27 1.620† 

 

0.616 0.642 0.799 0.759 

W. Virginia 22 1.780† 

 

0.900 0.221 0.368 0.527 

Wisconsin 44 1.394† 

 

0.069 0.059 0.054 0.106 

Wyoming 34 2.244† 

 

0.446 0.361 0.270 0.263 
† D-W statistic is in the inconclusive region between DL and DU (the upper and lower critical 
values, respectively). 
‡ D-W statistic is above DU and the null hypothesis of positive first-order serial correlation is not 
rejected. 

Table notes:  Testing is based on the residuals from the main baseline PMG estimation (the first 
estimation reported in the main text).   T is the number of observations in the time series for the 
state.  The d statistic is an asymptotic test for AR(1) serial correlation in the regression errors. 
The portmanteau test (also called a q test; see Box and Pierce (1970) and Ljung and Box (1978)) 
is for whether the residuals are white noise, and the lags noted are for the number of 
autocorrelations computed and included in the test.  The test is computed with the wntestq 
command in Stata 13.1. 
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