10-1-2012

The Effect of Riparian and Arid Environments on Stomatal Conductance in Baccharis salicifolia and Heteromeles arbutifolia

Danalit Rangel
Pepperdine University

Vicki Mac
Pepperdine University

Ariel Lan
Pepperdine University

Follow this and additional works at: http://digitalcommons.pepperdine.edu/sturesearch
Part of the Plant Biology Commons

Recommended Citation
Rangel, Danalit; Mac, Vicki; and Lan, Ariel, "The Effect of Riparian and Arid Environments on Stomatal Conductance in Baccharis salicifolia and Heteromeles arbutifolia" (2012). Pepperdine University, All Undergraduate Student Research. Paper 46.
http://digitalcommons.pepperdine.edu/sturesearch/46

This Research Poster is brought to you for free and open access by the Undergraduate Student Research at Pepperdine Digital Commons. It has been accepted for inclusion in All Undergraduate Student Research by an authorized administrator of Pepperdine Digital Commons. For more information, please contact Kevin.Miller3@pepperdine.edu.
The Effect of Riparian and Arid Environments on Stomatal Conductance in

Baccharis salicifolia and Heteromeles arbutifolia

Danalit Rangel, Vicki Mac, Ariel Lan
Pepperdine University Malibu, CA 90263

Materials and Methods
• Our sample size is seven leaves for each group of Mule Fat and Hollywood plant.
• The site for Hollywood plant is on Pepperdine campus and by the lacrosse field.
• The site for Mule Fat is the riparian area across the mail office on Pepperdine University Malibu, CA 90263.
• The LI-6400 Portable Gas Exchange System is used.
• Environmental parameter is set: CO2 at 400 ppm/mol, flow rate at 100 umol/s, block temperature at 22 °C, FvQuantum at 2000 µmol/m2s.
• We document the values for CO2+air, and internal, photosynthesis, conductance.
• We increase light level to measure leaf performance in response, related values include Fv/Fm, Phi PSI, ETR, and qP.

Discussion
Using the LI-6400 gas exchange system, we were able to compare conductance of Baccharis salicifolia and Heteromeles arbutifolia. We measured the conductance rate, photosynthetic rate, CO2 levels internally, CO2 levels of the air, fluorescence, phi PSI, electron transport rate, and qP of Baccharis salicifolia and Heteromeles arbutifolia. Baccharis salicifolia is a riparian species found on the Pepperdine campus, while Heteromeles arbutifolia is an arid species also found on the Pepperdine campus. By comparing the parameters we measured, we found that there is a higher conductance, fluorescence yield, electron transport rate, quantum yield, and photosynthetic quenching between Baccharis salicifolia and Heteromeles arbutifolia because of the riparian habitat that it is found in.

Introduction
The stomatal conductance of a plant is the process by which a plant releases water vapor concurrently with the intake of CO2. This plays a key role in transporting water throughout a plant. The influx of CO2 is crucial for plants to carry out photosynthesis and survive in its respected environment. The stomatal conductance of a plant is sensitive to a variety of factors. The environment in which a plant grows plays a crucial role in affecting its physiological properties. Two environments in particular, riparian and arid environments, differ vastly in that riparian plants are in a moist, wet area and arid plants are in a more dry environment. This study focuses on the effect of a riparian environment and an arid environment on the stomatal conductance in plants. Studies have shown that plants make adaptations to make possible to thrive in arid environments (Pugnaire and Haase, 1995). We have chosen to study a riparian plant (Baccharis salicifolia) and an arid plant (Heteromeles arbutifolia). We hypothesize that Baccharis salicifolia would have a higher stomatal conductance rate to water vapor loss compared to Heteromeles arbutifolia because Baccharis salicifolia thrives in a riparian environment in which water abundance would increase stomatal opening, thereby contributing to the greater conductance. Previous studies have indicated that stomata of plants are sensitive to water abundance and pressure (Whitehead, 1997). Thus, with a greater water abundance in riparian environments, stomata opening is greater which in turn increases stomatal conductance as well. However, in arid environments, stomata opening is decreased to conserve water which decreases stomatal conductance, an adaptation that these plants must make to survive in a dry environment. Studies in the past have also shown that water stress decreases conductance in plants (Ackerson, 1979). Previous studies have also shown that stomata utilize negative feedback to respond to water stress, such that when water stress is detected (Saldendra et al., 1999). Our hypothesis suggests that a plant in a riparian environment would experience little water stress, thus, its stomatal opening would increase and the stomatal conductance would be greater. On the other hand, a plant in an arid environment is more likely to experience water stress, which would decrease its stomatal opening and in turn, decrease conductance as well. We will test this hypothesis by locating a riparian environment and an arid environment on Pepperdine University’s campus. We will work with the plant Baccharis salicifolia (riparian) and Heteromeles arbutifolia (arid). We will use the LI-6400 gas exchange system to measure the stomatal conductance as well as other measurements such as photosynthetic rate, the Phi PSI value, carbon, internal, and fluorescence. We will then gather the collected data and analyze them to see whether H. arbutifolia has greater stomatal conductance compared to H. arbutifolia.

Results
• Figure 1 shows the difference between photosynthetic rate, conductance, fluorescence yield, and electron transport rate of Baccharis salicifolia and Heteromeles arbutifolia after calculating a t-test with a p-value of less than 0.0001
• Figure 2 shows the difference between the quantity yield of Baccharis salicifolia and Heteromeles arbutifolia after calculating a t-test with a p-value of less than 0.0001. The photosynthetic quenching of fluorescence t-test was calculated with a p-value of less than 0.02.

Conclusion
• The stomatal conductance in B. salicifolia (riparian) was on average higher than the stomatal conductance in H. arbutifolia (arid).
• B. salicifolia also had a higher photosynthesis compared to H. arbutifolia because there is a correlation between conductance and photosynthesis.
• B. salicifolia is more efficient in water splitting and electron acceptance, which in turn, allows it to have a greater electron transport rate (ETR) and a greater PSI value.
• Our observations show a significant difference between Baccharis salicifolia and Heteromeles arbutifolia due to their location in a riparian versus an arid habitat.
• Important to study the relationship between environment and species characteristics to protect natural habitats.

Literature Cited