2010

Differences in hydraulic conductance (Kh) as a function of leaf area (KS Leaf) and xylem size (KS Xylem) in Encelia californica and Venegasia carpesioides

Tony Audin  
*Pepperdine University*

Andrew Dudley  
*Pepperdine University*

Janel Gonzalez  
*Pepperdine University*

Follow this and additional works at: [https://digitalcommons.pepperdine.edu/sturesearch](https://digitalcommons.pepperdine.edu/sturesearch)

Part of the [*Plant Biology Commons*](https://digitalcommons.pepperdine.edu/sturesearch)

**Recommended Citation**

Audin, Tony; Dudley, Andrew; and Gonzalez, Janel, "Differences in hydraulic conductance (Kh) as a function of leaf area (KS Leaf) and xylem size (KS Xylem) in Encelia californica and Venegasia carpesioides" (2010). Pepperdine University, *Featured Research*. Paper 16.  
[https://digitalcommons.pepperdine.edu/sturesearch/16](https://digitalcommons.pepperdine.edu/sturesearch/16)

This Article is brought to you for free and open access by the Undergraduate Student Research at Pepperdine Digital Commons. It has been accepted for inclusion in Featured Research by an authorized administrator of Pepperdine Digital Commons. For more information, please contact *Katrina.Gallardo@pepperdine.edu*, *anna.speth@pepperdine.edu*. 
ABSTRACT

Southern California and the Santa Monica Mountains experience a climate similar to that of the Mediterranean basin. This means hot, dry summers, mild, wet winters, and large amounts of plant diversity. A major issue that can affect these regions is water availability and processing. To demonstrate this, hydraulic conductance ($K_h$) was measured as a function of leaf area ($A_{leaf}$) and xylem size ($A_{xylem}$). Two vascular plants were used for this study, Encelia californica and Venegasia carpesioides. This is because they are similar morphologically but are different genus and species. It was hypothesized that the larger plant ($V$. carpesioides) will have a larger hydraulic conductance ($K_h$), larger hydraulic conductance per leaf area ($K_h/A_{leaf}$) as well as a larger hydraulic conductance per xylem area ($K_h/A_{xylem}$) because of its larger need for water. $K_h$ was found using a Sperry apparatus and the student t-test gave a P-value of 0.1517, which does not suggest a significant difference, and $K_h/A_{leaf}$ using Leaf Area Index which gave a P-value of 0.0385, suggesting a significant difference in Leaf-specific hydraulic conductance ($K_h/A_{leaf}$) between Encelia californica and Venegasia carpesioides. This shows that the hypothesis was only partially accepted.

INTRODUCTION

Southern California is one of the five Mediterranean climates in the world. These regions are characterized by hot, dry summers, mild, wet winters, and high biodiversity (Strahler). Specifically, the Santa Monica Mountains range 40 miles from the LA basin and Hollywood hills to Ventura County and the Channel Islands. Much of the diversity found in southern California is concentrated here. But climate change is affecting the normal conditions for these regions and that diversity is shifting, both in type and physiology. A very important physiological feature is water potential and conductance (Chaves). In relation, this study will measure hydraulic conductance ($K_h$) as a function of leaf area ($A_{leaf}$) and xylem size ($A_{xylem}$). Changes in water availability is playing a major role in this environmental and physiological change.

The two plants chosen for this study are found largely in this area. The first is Encelia californica (Fig. 2), a member of the sunflower (Asteraceae) family and commonly called coast sunflower. The second plant observed was Venegasia carpesioides (Fig. 3), often called the canyon sunflower is also in the family Asteraceae. These plants were chosen to see the relationship in physiological structure and function between plants that are not exactly phylogenetically relatives (different genus and species), but share similar morphological features.

It was hypothesized that the larger plant ($V$. carpesioides) will have a larger hydraulic conductance ($K_h$), larger hydraulic conductance per leaf area ($K_h/A_{leaf}$) as well as a larger hydraulic conductance per xylem area ($K_h/A_{xylem}$) because of its larger need for water.

RESULTS

Unpaired Means Comparison for t-test (Kx leaf)
Grouping Variable: Category for t-test (Kx)
Hypothesized Difference = 0

<table>
<thead>
<tr>
<th>Mean</th>
<th>DF</th>
<th>t-Value</th>
<th>P-Value</th>
<th>95% Lower</th>
<th>95% Upper</th>
</tr>
</thead>
<tbody>
<tr>
<td>EC-Kh</td>
<td>10</td>
<td>2.381</td>
<td>0.0385</td>
<td>2.199</td>
<td>2.466</td>
</tr>
<tr>
<td>VC-Kh</td>
<td>9</td>
<td>2.381</td>
<td>0.0385</td>
<td>2.199</td>
<td>2.466</td>
</tr>
</tbody>
</table>

Unpaired Means Comparison for t-test (Kx xylem)
Grouping Variable: Category for t-test (Kx xylem)
Hypothesized Difference = 0

<table>
<thead>
<tr>
<th>Mean</th>
<th>DF</th>
<th>t-Value</th>
<th>P-Value</th>
<th>95% Lower</th>
<th>95% Upper</th>
</tr>
</thead>
<tbody>
<tr>
<td>EC-Kx</td>
<td>8</td>
<td>2.311</td>
<td>0.0385</td>
<td>2.086</td>
<td>2.466</td>
</tr>
<tr>
<td>VC-Kx</td>
<td>9</td>
<td>2.311</td>
<td>0.0385</td>
<td>2.086</td>
<td>2.466</td>
</tr>
</tbody>
</table>

DISCUSSION

Hydraulic conductance ($K_h$) and Xylem-specific hydraulic conductance ($K_{xylem}$) were tested with the Student’s t-test, finding P-values greater than 0.05, which allowed us to accept the null hypotheses. The average $K_{xylem}$ of E. californica was as well as the average flow of hydraulic conductance is seen to be larger than that of E. carpesioides.

The Student’s t-test conducted on Leaf-specific hydraulic conductance ($K_{leaf}$) ($A_{leaf}$) between the two species resulted in a p-value of 0.0385, which less than 0.05. Hence, the null hypothesis is rejected, presenting a significant difference between the $K_{leaf}$ of E. californica and V. carpesioides. Since the leaf size is much smaller in E. californica, the average $K_{leaf}$ of E. californica was larger than that of V. carpesioides.

In measuring xylem-specific hydraulic conductance, hollow piths were observed within V. carpesioides and were modified by filling the piths with simple putty. This hollow pith could be due to several causes, including infection, rapid growth, senescence, or specialized function (Encyclopedia Britannica). The instance that the hollow piths were not completely sealed creates possible error in measurements of $K_h$, causing it to largely increase. A more specific way of accommodating for deficient construction of pith should be stressed in further research. This shows how differences in internal morphology, which can go undetected, can affect physiology greatly.

Additionally, a higher sample size can be accounted for in future research, as higher sample size will increase accuracy of the Student’s t-test. Past research on these subjects were scarce, proving our efforts and knowledge gained even more significant.

CONCLUSIONS

• These 2 species, although morphologically-similar, exhibit differences in hydraulic conductance.
• Leaf size seems to vary more widely in regards to hydraulic conductance.
• Water relations and availability have a large effect on plant physiology and viability.
• Other pursuits in this subject could include transpiration rates for said leaves.

WORK CITED


M. M. Chaves, J. S. Pereira, Water Stress, CO₂ and Climate Change. Instituto Superior de Agronomia, Tapada da Ajuda 1399 Lisbon, Portugal, Pgs. 1131-1139


ACKNOWLEDGMENT

This project would not have been possible without the guidance and help from Dr. Stephen Davis, biology professor at Pepperdine University. His expertise on plant physiology and experimental technique proved invaluable during preliminary observation and use of the Sperry apparatus.