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Abstract: 
 

Accurate measurement of digital divides is important for policy purposes.  Empirical 
studies on broadband subscription gaps have largely used cross-sectional data, which 
cannot speak to the timing of technological adoption.  Yet, the dynamics of a digital 
divide are important and deserve study.  With the goal of improving our understanding of 
appropriate techniques for analyzing digital divides, we review competing econometric 
methodology and propose the use of duration analysis.  We compare the performance of 
alternative estimation methods using a large dataset on DSL subscription in the U.S., 
paying particular attention to whether women, blacks, and Hispanics catch up to others  
in the broadband adoption race.  We conclude that duration analysis best captures the 
dynamics of the broadband gaps and can be a useful addition to the analytic tool box of 
digital divide researchers.  Our results support the official collection of broadband 
statistics in panel form, where the same households are followed over time. 
 

A revised version of this paper will appear in Overcoming Digital Divides: Constructing 
an Equitable and Competitive Information Society, edited by E. Ferro et al., Hershey, Pa: 
IGI Global.  After publication, please cite the book chapter instead of this working paper. 

                                                 
*Hu:  Assistant Professor, Peking University Shenzhen Graduate School of Business.  Prieger:  Associate 
Professor, School of Public Policy, Pepperdine University.  This chapter was written while the second 
author was visiting the Federal Communications Commission.  The views expressed in this chapter are 
those of the authors and do not necessarily reflect the views of the FCC or any of its Commissioners or 
other staff. 
 

 



 

 

 

INTRODUCTION 
Digital divides are among the most pressing concerns in telecommunications 

policy.  If attention paid to the divides is to generate light, and not just heat, then policy-

makers require accurate measurement of the gaps in question. In this chapter, we assess 

some of the statistical tools that empirical researchers use to measure digital divides.  Our 

focus is on econometric regression studies using data from many individuals, households, 

or geographic areas.1  Many empirical studies of the digital divide analyze a cross-section 

of data2 on the extent of digital deployment or use.  Studies of broadband Internet access 

are a leading example (refer to the next section for citations).  In these studies, 

researchers regress broadband subscription on characteristics of the household or the 

area, depending on the nature of the available data.  Methods used for the binary access 

decision range from OLS regression, probit, and logit to more complicated estimators 

tailored to unique features of the data at hand (Flamm & Chaudhuri, 2007; Prieger & Hu, 

2008).  Researchers and policy-makers often use the results to identify subpopulations 

that are prone to lie on the wrong side of the digital divide. 

What is missing from most of these approaches is the ability to say much about 

the timing of technological adoption.  For example, take one of the results from Prieger & 

Hu (2008):  blacks in the U.S. subscribe to broadband DSL at a lower rate than do whites.  

Unanswered are the questions of whether this divide is only temporary, as predicted by 

the catch up hypothesis, and how rapidly the gap will close if so.  These questions are 

close to the heart of public policy toward digital divides.  If gaps exist but close quickly 
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without intervention, policymakers may better direct public resources elsewhere.  

Persistent gaps, on the other hand, may warrant further study and action. 

We aim to improve our understanding of appropriate techniques used to analyze 

the digital divide and policies aimed at reducing it.  We use data on DSL adoption in the 

U.S. to compare the policy implications deriving from traditional cross-sectional analysis 

with that from duration analysis, an appropriate but under-used statistical technique in 

digital divide research. Our work contributes to the policy literature on the digital divide 

in three ways.  We begin by clarifying the potential limitations of cross-sectional 

analysis.  We also propose and explore the performance of duration analysis applied to 

broadband take-up data.  Often data are available (or could easily be gathered) on how 

long a household has subscribed to broadband, even in cross-sectional data sets.  

Appropriately conducted duration analysis can then clarify the temporal dimension of the 

digital divide.  Finally, we compare duration analysis to other methods used to examine 

the temporal dimension of the gap.  Previous studies such as Whitacre (2008) and Flamm 

& Chaudhuri (2007) have analyzed data collected from different time periods.  We 

explore whether duration analysis yields different conclusions than does panel data3 

analysis and whether results are more easily interpretable for policy makers. 

In our empirical section, we examine the demand for DSL broadband in five U.S. 

states.  To compare traditional cross-sectional analysis with duration analysis and panel 

data methods, we focus attention on groups prone to the digital divide:  racial minorities 

and women.  We assess the gaps three ways.  Ordinary least squares and probit regression 

using the cross-sectional data, which is closest to what is done in most studies, establishes 

a baseline for our results. Next, we use duration (also known as survival) analysis to 
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speak to the pace at which gaps can be expected to close.  Finally, we can use the cross-

sectional data, coupled with the information on when households subscribed, to create a 

synthetic panel data set on subscription stretching back from the date of the cross-section 

to when DSL was first deployed in the neighborhood.  These are the data that would have 

been available had subscription been surveyed periodically to create a panel dataset, for 

example.  The latter two methods address the temporal dimension of the broadband gap 

for these groups.  Although there is no policy variable in the models, the techniques we 

use also apply to policy analysis. We conclude that duration analysis best captures the 

dynamics of the broadband gaps and can be a useful addition to the analytic tool box of 

digital divide researchers.   

We describe the statistical models without assuming that the reader is familiar 

with advanced econometric techniques.  The chapter thus serves as both a reference for 

practitioners and as a blueprint for future research. 

BACKGROUND 

Literature 
Over the past several years, broadband adoption has been widely studied. We look 

into main examples of the previous research in this section, emphasizing the 

methodology and nature of the data used in their estimations. Most authors use cross-

sectional data, although a few take advantage of repeated cross-sectional data.  We pass 

over the earlier generation of studies looking at pre-broadband digital divides (e.g., 

Fairlie, 2004), as well as studies not using individuals or households for the unit of 

analysis.   
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Among cross-sectional studies, the logit model for binary household choices is the 

most common methodology employed (Duffy-Deno, 2000; Kridel, Rappoport, and 

Taylor, 2001; Rappoport et al., 2003; Stanton, 2004).  Crandall, Sidak, & Singer (2002) 

use nested logit, an extension of the logit model, to estimate broadband demand.  None of 

these examine the impact of gender or race on demand. The probit model (Leigh, 2003; 

Savage & Waldman, 2005) is less commonly employed.  Leigh (2003) included variables 

for race, but failed to find significant differences in adoption (but also could not control 

for broadband availability).  Prieger & Hu (2008) use a probit model adapted to 

aggregations of household data to find that women, blacks, and Hispanics have lower 

demand for DSL. 

A smaller set of studies uses more than one cross section, collected at different 

times.  Chaudhuri, Flamm & Horrigan (2005) analyze data from the Pew Internet and 

American Life Project with a logit model and another of its extensions, the ordered logit 

model, and find that women and blacks are less likely to subscribe to broadband.  The 

ordered logit model is used to look at the related, hierarchical choice of no Internet access 

vs. dial-up access vs. broadband access.  Flamm & Chaudhuri (2007) come to the same 

conclusion with later data from the same source examined with another ordered logit 

model. Finally, Whitacre (2007) uses the logit model to uncover shifts in the influence of 

household characteristics and telecommunications infrastructure on residential broadband 

adoption decisions.  We did not find studies of broadband adoption that use panel data 

methods or that employ duration analysis.  We show below that duration analysis is a 

useful tool to address the evolution of digital divides. 
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The catch up hypothesis 

The temporal dimension of a digital divide is paramount when mapping statistics 

to the realm of policy. Persistent digital divides are cause for concern, while evanescent 

gaps are of little consequence.  Central to our analysis is the notion of the adoption curve: 

the fraction of potential broadband adopters who have already adopted, plotted over time 

(Figure 1).  The theory of technological diffusion (see Whitacre (2007) for a summary 

specific to broadband) explains the commonly observed ogive (S-shaped) adoption curve 

by learning.  When few have adopted a new technology, few other will learn about it (or 

be convinced they should adopt) and the adoption curve rises slowly.  Howell & Oren 

(2002) also highlight the roles of informational barriers and learning effects in DSL 

adoption. As time passes and more are exposed to the innovation, the adoption curve 

increases more rapidly. Eventually, the pace of adoption slackens when most have 

adopted and the remaining holdouts adopt slowly. 

Textbook diffusion theory case thus posits the catch-up hypothesis.  Even if a 

group has a lower adoption rate than the rest of the population, as depicted by the heavy 

adoption curve in Figure 1, both curves converge at full adoption eventually.  While full 

convergence undoubtedly exists only in the realm of mathematical modeling, the catch-

up hypothesis usefully highlights three points.  First, adoption gaps today may disappear 

tomorrow. Second, even when ultimately converging, the adoption rates may diverge 

among groups initially.  In such cases, cross-sectional analysis will uncover these gaps.  

Temporary gaps are not necessarily without policy concern.  Given evidence that the way 

adopters use the Internet changes as they gain experience online (e.g., Weiser, 2000), 

differences in the timing of adoption may lead to differences in Internet usage among 
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groups even after most have adopted.  Third, a key question is not merely if divides will 

disappear but when. 

COMPARISON OF METHODS 

Theory 
We compare several econometric methods in our exploration.  Econometrically 

experienced readers can skip to the next section to see our empirical results.  For those 

wishing a brief review, this section sets out the basics of linear and probit cross-sectional 

regression models for binary dependent variables, duration analysis, and panel data 

methods.   

Cross-sectional methods 
Least satisfactory for purposes of investigating the catch-up hypothesis are cross-

sectional methods, which attempt to uncover the determinants of adoption with data 

reflecting only one point in time.  In terms of Figure 1, cross-sectional data is taken from 

households (or other units of observation) all at one point on the time axis.  Cross-

sectional studies can uncover disparities in adoption among subsets of the population, but 

generally cannot address how quickly the gaps developed or might close.   

The cross-sectional studies reviewed in the literature section above model the 

mean adoption rate for a household as a function of (a linear combination of) explanatory 

variables (the regressors): 

   E(yi|xi) = f(xi′β) (1) 

where yi is a binary variable taking values 1 if household i has adopted, and 0 otherwise, 

xi is a vector of regressors, and β is a vector of coefficients to be estimated.  In the case of 

ordinary least squares (OLS) regression, termed the linear probability model when 
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applied to binary dependent variables, the function f is the identity function. We assume 

readers are familiar with OLS methods.  

In probit (or logit) models, f is the cumulative density function of the Normal (or 

logistic) distribution.  Probit models have an advantage over the linear probability model, 

which is not commonly used in the broadband adoption literature.  Unlike the linear 

probability model, the predicted probability of adoption from the probit model is bounded 

between zero and one, as a probability should be.  While the probit model is no more 

difficult to implement with modern statistical software than is OLS, the interpretation of 

the coefficients is less obvious.  In OLS, βj (the coefficient for the jth regressor) is also 

the marginal effect, the effect on E(yi|xi) of a unit increase in regressor j.  In the probit 

model, the coefficient gives the sign of the marginal effect but not its level, which is 

βjφ(xi′β), the derivative of the conditional mean (1) with respect to regressor j.4  Since the 

marginal effects depend on the data (i.e., xi  appears in the expression), they are typically 

computed at either the mean of the regressors or by averaging the marginal effect for 

each observation over the sample.  We do the former below. 

Cross-sectional methods, lacking a temporal dimension, cannot speak to the 

catch-up hypothesis and are of important but limited use for policy purposes.  

Nevertheless, these methods can document and partly explain the determinants of digital 

divides at any point in time, which is not without value. Furthermore, many times, only 

cross-sectional data are available, particularly when new technology is first available.  

Duration analysis 
When the purpose of the analysis is to estimate adoption curves, a natural method 

to use is duration analysis.  Given its long association with biostatistics, duration analysis 
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is also commonly known as survival analysis.  There are many excellent textbook 

treatments of duration analysis (e.g., Kalbfleisch & Prentice, 2002), and here we present 

only the basics needed to understand our estimations.  In our context, the duration of 

interest is the time from the availability of broadband until a household adopts the 

technology.  The fundamental notion in duration analysis is the hazard rate, h(t), the rate 

at which adoption occurs given that it did not occur before time t.  In exponential 

duration models, the hazard rate for household i is modeled as a function of explanatory 

variables (often called covariates instead of regressors in duration analysis):  

 h(ti) = exp(xi′β) (2) 

Exponentiating xi′β ensures that the hazard rate is non-negative.  If no functions of time 

are included among the covariates, the hazard rate in the exponential model is constant.  

The inverse of the hazard rate is the mean duration for the exponential model.5  The 

interpretation of coefficients in specification (2) is thus as follows:  a positive βj implies 

that increases in the associated covariate increase the hazard and decrease the expected 

time until adoption.  Coefficients can also be interpreted as in a log-linear regression 

model: a one unit increase in xj increases the hazard by approximately βj×100 percentage 

points.  The exponential model is the simplest of the proportional hazard models, so-

named because covariates have a proportional effect on the hazard rate.   

The exponential model in its simple form, with its constant hazard rate, is not 

flexible enough to investigate the catch-up hypothesis.  However, by splitting each 

duration into month-long intervals and adding dummy variables for the month, the 

baseline hazard rate can be modeled nonparametrically.  Let Dm(t) be a dummy variable 

for month m with coefficient αm.  More precisely, Dm is a step function that is zero 
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outside month m (timed from the start of the duration, not the calendar) and one within.  

Collect these into vectors D(t) and α.  Then our semiparametric6 exponential model has 

hazard rate for ti in month m = 1,…,M of 

 h(ti) = exp(D(t)′α)exp(xi′β) = h0(t)exp(xi′β) (3) 

The baseline hazard h0 is piecewise constant and can take any shape, nonparametrically 

accounting for the basic duration properties of the data.  We constrain h0 to be constant 

within a month only because DSL adoption in our data is observed at the monthly level 

and any additional α’s that further partition time would be unidentified.7  Since the α’s 

vary during the time until adoption for any duration lasting longer than one month, we 

now have time-varying covariates (TVCs).  Explicit treatment of TVCs complicates 

notation, and we ignore the issue here (except when presenting the formula for the 

adoption curve in equation (4) below).  For the practitioner, the pressing question is how 

to set up the data for estimation when there are TVCs, and the answer depends on which 

software package is used.8

While the addition of h0 makes the baseline hazard flexible, specification (3) (as 

well as other common semiparametric hazard models such as the Cox model) still 

imposes proportionality on the impact of the covariates.  If a coefficient for Hispanics is 

−0.1, for example, then their hazard rate is constrained to always be (about) 10% lower 

than non-Hispanics in all months.  To relax proportionality, we interact the covariates of 

interest (in our case, the variables Female, Hispanic, and Black) with the monthly 

constants.  With a new set of covariates D1(t)x,…, DM(t)x (where x stands for the female, 

Hispanic, and black variables), the impact of these variables on the baseline hazard can 

vary freely among months.  While greatly increasing the number of coefficients to be 
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estimated, the added flexibility is essential to investigate the catch-up hypothesis.  Our 

enormous number of observations makes estimating the additional coefficients no 

problem. In smaller datasets the degrees of freedom may be used up rapidly, since 

interacting a variable adds M-1 coefficients to be estimated. 

With an estimate of the (time-varying) hazard rate, calculation of the adoption 

curve is straightforward.  The adoption curve is formally the cumulative density function 

of the durations given the observed covariates.  Standard results from survival analysis 

(Kalbfleisch & Prentice, 2002) show that for our model, the adoption curve F is found 

from the hazard rate as 

  (4) 
( )m
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where xi is partitioned into TVCs wim and other covariates zi, M is the number of months 

spanned by t, and Δtm is the amount of time spent in month m.  With estimates of α, β, 

and γ in hand, predicted adoption curves can be generated for any subgroup of the 

population by setting the covariates to the appropriate values. 

Repeated cross section and panel data  
A few papers in the literature (e.g., Flamm & Chaudhuri, 2007; Whitacre, 2008) 

use repeated cross sections to address the digital divide.  Repeated cross sections are 

cross sectional data gathered at multiple times, where the individuals or households differ 

each time.  Repeated observations on the same units of analysis, known as panel data, 

enable more sophisticated modeling than do single or repeated cross-sections; see Hsiao 

(2002) for an excellent treatment of methods suitable for panel data.  We are not aware of 

previous panel studies of broadband demand using individual- or household-level data.  
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The greatest advantage of panel data is the ability to control for unobserved factors 

specific to the unit of observation (e.g., households) that may render cross-sectional 

estimation results invalid through the use of random or fixed effects.  Perhaps more 

important for present purposes, panel data can shed light on the dynamics of a divide 

since households are followed over time.  Panel methods are available for linear, probit, 

and logit models. The interested reader is referred to Hsaio (2002) for descriptions of 

these and other panel models. 

An empirical application of the methods 
The data we analyze is from 1998-2000, the early years of DSL adoption.  The 

vintage of the data limit the applicability of our results to present digital divides.  

However, the dataset has other advantages that make it suitable to demonstrate the 

candidate methods.9  The data cover households in over 50,000 Census blocks in four 

Midwestern U.S. states.  For each Census block, the dependent variable is whether at 

least one household subscribes to the incumbent phone company’s DSL service.  Only 

blocks where DSL is available are in the data.  Since it is unlikely that DSL from any 

other provider would have been offered without the incumbent’s service available, the 

data give a good measure of DSL adoption.  Cable modem subscription and other forms 

of broadband Internet access are not covered in the data, however.  While the data are not 

at the household level, the geographic fineness of the data10 and the large number of 

observations make these data unique.  Prieger & Hu (2008) describe the construction of 

the dataset more fully, and analyze it using a cross-sectional method.   

Joined to the dataset are Census variables measuring the number of households in 

the block, the racial and ethnic composition, the fraction of women, and income.  The 
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latter is aggregated in the Census data to the block group level, and so in all estimates we 

cluster the observations at that level when calculating the standard errors of the 

estimates.11  Each Census block is also matched to the phone company’s local service 

area into which it falls.   

For the cross-sectional analysis, we use the snapshot of DSL adoption as of March 

2000 provided in the data, at which time 85% of blocks had a household subscribing to 

DSL.  For the duration analysis, we create observations on the time until initial adoption 

by a household in the block.12  Time elapsed is measured from to the initial availability of 

DSL in the block, and so durations for blocks in different local service areas are not 

necessarily occurring at the same calendar time.  Blocks that never subscribed are 

durations for which the ending time is not known, and are marked as right-censored 

observations.13  For the panel analysis, we create monthly panel data from the March 

2000 data and the information on when first adoption occurs in each block.  A block that 

could have subscribed to DSL a year before any household actually did, for example, will 

have zeroes for the adoption variable for 12 months before it changes to one upon 

adoption and thereafter.  The data are equivalent to a monthly adoption survey of areas 

where DSL is enabled. 

Results from cross-sectional models  
To establish a baseline for DSL adoption, in this section we present the linear 

probability model (OLS) and probit regression results from the cross sectional data from 

March 2000.  Results are presented in Estimations 1 (OLS) and 2 (probit) in Table 1.  

Our main independent variables of interest in our estimations are the fraction within each 

Census block that are female, identify with a racial minority, or claim Hispanic ethnicity.  
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In estimation 1, aside from race, ethnicity, and gender we control for the log of income 

(in levels and squares to test for non-linearities), average household size, the number of 

households within the census block, and a set of indicator variables for the local 

telephone service (central office) areas.  The role of the central office indicators is to hold 

constant all unobserved factors common to all households in the area.  Such factors 

include how long DSL has been available in the central office, the availability of 

competitors also offering DSL in the area, and the average value of all other unobserved 

factors that vary among households.  

The coefficients from OLS, reported in Table 1, are similar to the marginal effects 

from the probit estimation, and we discuss the latter.  In comparison to whites, the 

excluded category, only Asians and other races have significantly lower probability 

(13.1% and 6.6% respectively) of DSL adoption. That adoption is lower for Asians is the 

opposite of national statistics (Prieger & Hu, 2008).  We have few Asians and “other 

races” in our Midwestern sample (3.7% and 7.7% of people, resp.), and our results may 

not be representative. The negative coefficients for women and blacks reveal adoption 

gaps, but are insignificant.  Surprisingly, the coefficient for Hispanics is positive (but not 

significant).  Blocks with more and larger households are more likely to contain a 

household adopting DSL, as expected.  Income has no significant effect, probably 

because the central office fixed effects remove the variation in average income among 

local service areas. 

The cross-sectional estimations yield a few results of note.  First, as one 

commonly finds with binary dependent variable models, it matters little whether one uses 

probit or the linear probability model.14  More interesting is that the analysis does not 
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uncover digital divides where other studies lead us to look for them, except for the “other 

race” category.  It may be that broadband diffusion was fairly even among the population 

in the states represented in the data. However, our analysis in the next section leads us to 

conclude instead that the cross-sectional analysis fails to find broadband gaps that do 

exist for women, blacks, and Hispanics.  Finally, there is no way to speak to the catch-up 

hypothesis with these results, because there is no temporal dimension in the data.  

Results from duration analysis 
We now consider whether duration analysis sheds additional light on the adoption 

experience of women and minorities.  Two specifications of the duration model are 

compared in Table 2: one in which the variables for blacks, Hispanics, and females are 

constrained to affect the hazard rate proportionally (Estimation 3), and another in which 

they are not (Est. 4).  The coefficients on the monthly dummy variables are largest in 

month one (showing that many households adopt DSL immediately upon availability) 

and overall create a rough U-shaped hazard rate.15 In both estimations, the hypothesis 

that the coefficients on the monthly dummy variables are equal to each other is rejected.  

Thus the baseline hazard rate of adopting DSL is not constant (or even monotonic) in 

these data, which makes our semiparametric approach a appropriate choice. 

Estimation 3 shows that women, blacks, Hispanics, and Asians have significantly 

lower hazard rates for DSL adoption. Thus, in contrast to the suggestions of the cross-

sectional results, these groups take longer on average to adopt after DSL becomes 

available to them.  The coefficient for other races is not significant.  The coefficients for 

log income imply that as income increases the time to adoption decreases (for all but the 

bottom 0.7% of incomes).  Larger households also decrease the time to adoption. 
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Estimation 3 constrains the female, black, and Hispanic variables to affect the 

hazard proportionally regardless of elapsed time. We relax this assumption to investigate 

the catch-up hypothesis in Estimation 4, in which we allow the impact of these three 

variables to differ in each month elapsed after DSL is available.  A hypothesis test for the 

three variables that the coefficients in the expanded set are equal in all months, which 

tests the assumption of proportionality, is soundly rejected for each variable.  The impact 

and significance of the other variables is similar to that in Estimation 3. 

Catch-up is most easily investigated via the adoption curves implied by the 

coefficients.  The adoption rates for women, blacks, Hispanics, and others are graphed in 

Figure 2.  We limit the graphs to the first nine months after DSL becomes available 

because no further adoption is observed until month 22.  The adoption curves are thus flat 

until month 22, and then the coefficients are either insignificant (black*M22) or large and 

negative (Female*M22 and Hispanic*M22), so that the adoption curves remain nearly 

flat.16  Two curves are calculated in each graph to compare the group of interest with 

everyone else.17  In the top panel of the figure, the adoption rate for women starts at 2.1% 

after the first month of availability and rises to 3.3% after nine months.  Men start out 

with a 10.3% adoption rate, and the absolute difference between men and women stays 

relatively constant across the graph.  Thus, there is no evidence of women catching up to 

men during the first year of availability. 

The adoption curve for blacks in the middle panel shows a different story.  The 

adoption rate for blacks starts at 3.7% after the first month of availability, compared to 

4.8% for non-blacks.  The adoption rate for blacks rises to 4.3% after nine months, but 

the gap between blacks and others doubles over time, from 1.1 percentage points after 
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one month to 2.2 points after nine months.  Not only do blacks fail to catch up during this 

period of initial DSL availability, they fall further behind. 

Hispanics fare differently than women and blacks concerning adoption.  

Hispanics have an adoption rate of 4.1% initially, compared to 10.7% for non-Hispanics.  

Hispanic household adoption rises to 6.2% after nine months.  After a slow start, their 

gains in adoption are greater than that for non-Hispanics, and their adoption gap narrows 

by 18% (from 6.6 to 5.4 percentage points) during the time.  Hispanics do begin to catch 

up even during our relatively brief period.  

Results from panel data models  
In this section we repeat the OLS and probit regressions using panel data to 

compare the duration analysis with another way of studying digital divide dynamics.  In 

addition to the set of regressors we use in the cross-sectional estimations, we include 

dummies for each calendar month in the estimation.  We again include indicators for the 

local service areas to control for unobserved, time-invariant factors specific to the central 

office area.18  Since, as before, the coefficients from OLS estimation for DSL adoption 

are similar to the marginal effects from the probit estimation we present and discuss only 

the latter.  Two specifications are compared in Table 3.  In Estimation 5, the adoption gap 

between women and men is constrained to be constant over time, and same for the gaps 

between the minority groups and their non-minority counterparts.  In Estimation 6, the 

adoption gaps for women, blacks, and Hispanics are allowed to vary as time progresses.   

In both estimations, the coefficients for the monthly indicator variables are 

positive, significant, and generally increasing over time.  The month coefficients by 

themselves represents the baseline adoption trend for all groups in Estimation 5 and for 
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non-black, non-Hispanic males in Estimation 6.  The data thus show that over the period 

December 1998-March 2000, demand for DSL services progressed in the region.  Recall 

that since only Census blocks where DSL is available at the household are included in 

each month’s data, the results do not merely pick up that DSL becomes more widely 

available.  

In Estimation 5, the signs and significance of the coefficients for income, number 

of households, and household size are the same as in the corresponding cross-sectional 

estimation (Estimation 2), and we focus on the variables of interest instead. The marginal 

effects show that Asians and those in the “other race” category have significantly lower 

(the latter only at the 10% level) adoption rates than the whites. Women also have lower 

adoption rates (10% significance level) than men. The gaps are sizeable: 17.2% for 

Asians, 6.6% for women, and 11.0% for other races.  There are small, insignificant 

adoption gaps between blacks and whites and between Hispanics and non-Hispanics.  

Compared to the results from the cross-sectional estimation, the estimated 

adoption gaps are larger for all groups of interest, except for blacks. The larger number of 

observations also leads to statistical significance (albeit only at the 10% level) for the 

gaps for women and other races. In addition, using the panel data removes the anomalous 

positive coefficient for the Hispanic group.  Since these results are more in line with 

results found in the literature, the case is strong for using panel data over a cross-section, 

even before moving to the augmented set of variables in Estimation 6.  We compare the 

panel data results to the results of the duration analysis below. 

In Estimation 6, we interact the month indicators with the variables for women, 

blacks, and Hispanics to evaluate how their adoption gaps evolve.  The marginal effect 
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for, e.g., blacks in month 5 is the difference in the level of broadband adoption between 

blacks and whites in the same month.  If the marginal effect is negative, there is a 

broadband gap that month for the group in question.  The gaps in DSL adoption are 

depicted in Figure 3.19   

The estimation indicates that, as with the duration estimations, there are 

significant differences in the evolution of the broadband gaps for women, blacks, and 

Hispanics.  In month one, only the gap for women is significant.  However, as time 

passes the gaps reverse.  For women, the gap narrows significantly after eight months, 

with a few months of reversal mixed in, until the final month, which shows women 

strongly ahead of men. Hispanics start with essentially no gap, show stronger adoption 

than non-Hispanics through the first year, and then begin to lag sharply in the last few 

months.  The pattern for blacks is similar to that of Hispanics, except that they have only 

one month of significantly more adoption than whites. The pattern of catch up overall, 

therefore, is present for the women but absent for blacks and Hispanics.  The impacts of 

the other variables are generally similar to those in Estimation 5. 

To compare with the results of the duration analysis, consider the message Figure 

1 suggests if it is truncated at nine months.  One would conclude that female broadband 

adoption not only catches up to the baseline, but surpasses it.  Blacks apparently start out 

ahead of others but slowly lose their advantage and maybe fall behind.  Hispanics also 

start out ahead and increase their broadband lead over others during the next eight 

months.  These conclusions differ starkly with the patterns revealed by the duration 

analysis. The previous section showed that women exhibit no evidence of catching up to 

men, that adoption by blacks was never ahead of others, and that Hispanics narrow their 
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broadband gap but do not erase it. Furthermore, the panel results do not seem plausible in 

their own right, given other estimates of broadband demand (Prieger & Hu, 2008; Flamm 

& Chaudhuri, 2007; Stanton, 2004).   

Why do the panel results mischaracterize the dynamics of the broadband adoption 

gaps?  The comparison to the results from the duration model is not exact, since the 

estimates in the previous section are at the household level and those here are at the level 

of the Census block.  However, aggregation alone should not create such widely differing 

results.  To test this, we aggregated the data to the block group level, and re-ran 

Estimation 6.  Although the levels of the broadband gaps for women, blacks, and 

Hispanics differed somewhat from Figure 3, the general shape of the curves was the 

same.  

A more likely reason that the panel data—and also the cross-sectional data—do 

not properly capture the dynamics of the adoption gaps is that DSL becomes available at 

different times in different areas.  Time in the duration model is time elapsed since 

availability, whereas in the panel data it is calendar time.  The panel estimations thus 

suffer from composition effects, since in any calendar month there are new areas added to 

the sample as DSL becomes available.  Furthermore, in any cross-section of the panel, 

some areas will have had access to DSL for months, while it will be newly introduced in 

other areas. Of course, the panel data can be re-organized to have the same timing 

convention as do the duration models. However, probit estimation of monthly 

observations on time to adoption is merely a duration model itself.  However, discrete 

duration models estimated by probit are neither as easy to interpret nor as naturally linked 

to the underlying duration process as is our duration model.20  
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CONCLUSION 
Duration analysis can be a useful analytic implement in the tool box of digital 

divide researchers.  Cross-sectional studies may highlight the existence of divides at a 

point in time (although they did not here), and indeed may be all that is possible in the 

initial stages of monitoring adoption of a new technology.  However, with our DSL 

adoption data duration analysis gives a more complete picture.  In particular, duration 

analysis sheds light on how groups progress along their adoption curves.  Policymakers 

can use the information to identify groups for which the adoption gap is widening rather 

than closing.  While some of the inner workings of duration analysis may appear arcane 

to policymakers without substantial econometric foundations, the results can be presented 

in adoption curves, which are easy for anyone who can read a graph to interpret and 

understand.   

Although we have concerned ourselves in this chapter primarily with  

methodological issues, our work suggests one policy recommendation.  For duration 

analysis to be performed, longitudinal data must be available on households.  To the 

extent that duration analysis proves useful for analyzing digital divides, it follows that 

priority in data collection should go to following the same people or households over 

time, rather than merely surveying differing cross-sections.  Thus, official broadband 

statistics collected in panel form should be supported and expanded.  The U.S. Federal 

Communications Commission recently recommended to the Census Bureau that the 

American Community Survey (ACS) questionnaire be modified to gather information 

about broadband availability and subscription in households.21  However, given that the 

ACS does not resample the same households, perhaps official support would be better 

directed to panels such as the Current Population Survey from the U.S. Bureau of Labor 
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Statistics, a longitudinal survey which has asked questions relating to broadband in the 

past. 

 

APPENDIX 
This technical section deals with adapting the Census block-level observations to 

a household-level analysis for maximum likelihood estimation (MLE).  The issues 

discussed here are unique to our dataset and can be ignored if household observations are 

available. 

Let the number of households in a Census block be N.  Define (compound) event 

A as the first household adoption of DSL not occurring until time interval [t,t+Δ), event B 

as the first adoption occurring before t, and event C as the first adoption not occurring 

until after t+Δ.  Since events A, B, and C are mutually exclusive and exhaustive, we have: 

 Pr(A) + Pr(B) + Pr(C) = 1 (A1) 

Since the complement of B is that all adopt after t, which has probability S(t)N, we have 

Pr(B) = 1− S(t)N.  Similarly, Pr(C) = S(t+Δ)N.  Combining these facts with (A1) implies 

 Pr(A) = S(t)N − S(t+Δ)N (A2) 

Taking a second-order Taylor’s expansion shows that 

 S(t+Δ)N = S(t)N + ΔNS(t)N-1 S′(t) + o(Δ2) (A3) 

where o(x) means “terms of order x”.  Expressing the right side of (A2) as a rate, 

applying (A3), and noting that S(t) = −f(t) (the p.d.f.) gives 

 )()()()()( 1 Δ+=
Δ

Δ+− − otftNStStS N
NN

 (A3) 

21 



 

Taking the limit of (A3) as Δ→0 and explicitly noting the dependence of S and f on 

coefficients β gives the likelihood for an observation: 

  (A4) );();()( 1 βββ i
N

iii tftSNL i −=

where the subscript denotes quantities and functions pertaining to observation i. Since 

Li(β) is proportional to Ni, that term can be ignored when maximizing the log likelihood.  

Dropping Ni, the rest of (A4) is equivalent to the likelihood of observing one household 

adopting at ti and the other Ni−1 households adopting after ti.  We can thus expand each 

Census block observation into separate, identical observations for each household, mark 

all but one of them as censored, and perform MLE on the expanded dataset.  The block 

characteristics are assigned to each household for their covariates.  To account for the 

fact that only one observation per Census block is available, the standard errors must 

account for clustering at (at least) the Census block level.  In fact, we cluster at a higher 

level of observation in the text. 
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Figure 1: S-shaped Adoption Curves 
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Figure 2:  Estimated DSL Adoption Curves from the Duration Model 
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Figure 3:  Estimated DSL Adoption Gaps from the Panel Data Model 
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Table 1:  DSL Adoption:  Cross-Sectional Estimation Results 
 

 Estimation 1  
OLS 

Estimation 2  
Probit 

 
coefficient s.e. 

marginal 
effect   s.e. 

Female -0.026 0.022 -0.026 0.020 
Black -0.033 0.022 -0.030 0.020 
Hispanic 0.045 0.029 0.039 0.027 
Asian -0.147*** 0.035 -0.131*** 0.027 
Other race -0.075*** 0.028 -0.066*** 0.024 
Income (log) 0.232 0.228 0.243 0.219 
Income (log)  
squared -0.012 0.011 -0.013 0.010 
Household size 0.011*** 0.004 0.012*** 0.003 
Number of Household 4.13E-4*** 3.71E-5 0.001*** 7.09E-5 
   
R2 (OLS)/Pseudo-R2 (probit) 0.0657          0.0658 
N 51,796                51,796 

* = significant at the 10% level; ** = significant at the 5% level; *** = significant at the 1% level. 

Notes:  both estimations include local telephone service area fixed effects, not shown in the table.  Standard 

errors are robust to heteroskedasticity and clustering at the block group level. 
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Table 2:  DSL Adoption:  Duration Analysis Results 
 
 Estimation 3 Estimation 4 
Variable coefficient s.e. coefficient s.e. 
Female -1.353*** 0.232   
Female*M1   -1.633*** 0.253 
Female*M2   0.349 0.865 
Female*M3   -0.184 0.949 
Female*M4   -1.557* 0.867 
Female*M5   1.364 1.062 
Female*M6   0.365 0.637 
Female*M9   0.754 0.936 
Female*M22   -3.343** 1.526 
Black -0.333*** 0.101   
Black*M1   -0.268** 0.109 
Black*M2   -10.417** 4.250 
Black*M3   -3.041*** 0.548 
Black*M4   0.266 0.238 
Black*M5   -0.504 0.395 
Black*M6   -0.685*** 0.217 
Black*M9   -10.431 7.284 
Black*M22   0.306 0.377 
Hispanic -0.674*** 0.184   
Hispanic*M1   -0.982*** 0.209 
Hispanic*M2   -0.995 0.776 
Hispanic*M3   1.536*** 0.308 
Hispanic*M4   -1.498*** 0.550 
Hispanic*M5   -4.326*** 1.147 
Hispanic*M6   1.582*** 0.428 
Hispanic*M9   -0.778 0.630 
Hispanic*M22   -1.568** 0.625 
Asian -2.801*** 0.381 -2.765*** 0.380 
Other race 0.189 0.246 0.309 0.245 
Income (log) -2.510*** 0.266 -2.650*** 0.261 
Income (log) squared 0.136*** 0.014 0.142*** 0.013 
Household size 0.433*** 0.028 0.422*** 0.028 
Month 1 8.847*** 1.340 9.819*** 1.334 
Month 2 4.786*** 1.333 5.108*** 1.360 
Month 3 5.071*** 1.351 5.258*** 1.434 
Month 4 5.762*** 1.349 6.543*** 1.401 
Month 5 5.057*** 1.363 4.718*** 1.492 
Month 6 6.782*** 1.342 6.529*** 1.367 
Month 9 6.433*** 1.350 6.431*** 1.431 
Month 22 5.845*** 1.357 7.576*** 1.543 
     
χ2 stat (p-value) 4,855.3 (0.000) 5,562.3 (0.000) 
Pseudo-likelihood -253,041.8  -252,085.9  
N 1,917,724  1,917,724  

* = significant at the 10% level; ** = significant at the 5% level; *** = significant at the 1% level 

Notes:  both estimations include state and calendar year fixed effects, not shown in the table.  Standard 

errors are robust to heteroskedasticity and clustering at the block group level. 
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Table 3:  DSL Adoption:  Panel Probit Estimation Results 
 

 Estimation 5 Estimation 6 
Variable marginal effect s.e. marginal effect s.e. 
Female -0.066* 0.035   
Female*M1   -0.111*** 0.028 
Female*M2  -0.107*** 0.029 
Female*M3  -0.118*** 0.030 
Female*M4  -0.099*** 0.033 
Female*M5  -0.079** 0.037 
Female*M6  -0.052 0.046 
Female*M7  -0.072 0.049 
Female*M8  -0.049 0.051 
Female*M9  0.086 0.062 
Female*M10  0.002 0.071 
Female*M11  0.096 0.076 
Female*M12  0.125 0.084 
Female*M13-M18   -0.021 0.079 
Female*M19-M22   -0.045 0.079 
Female*M23   -0.261** 0.123 
Female*M24   -0.070 0.160 
Female*M25-M26   -0.033 0.174 
Female*M27   0.243 0.218 
Black -0.023 0.038   
Black*M1   0.056 0.037 
Black*M2   0.018 0.037 
Black*M3   0.004 0.038 
Black*M4   -0.030 0.039 
Black*M5   0.124*** 0.042 
Black*M6   -0.064 0.044 
Black*M7   0.040 0.051 
Black*M8   -0.084* 0.046 
Black*M9   -0.180*** 0.048 
Black*M10   -0.189*** 0.052 
Black*M11   -0.216*** 0.053 
Black*M12   -0.256*** 0.054 
Black*M13-M18   -0.083 0.054 
Black*M19-M22   -0.031 0.053 
Black*M23   0.136 0.076 
Black*M24   -0.327 0.094 
Black*M25-M26   -0.466*** 0.095 
Black*M27   -0.711*** 0.101 
Hispanic -0.005 0.060   
Hispanic*M1     
Hispanic*M2   -0.009 0.051 
Hispanic*M3   -0.012 0.052 
Hispanic*M4   -0.029 0.052 
Hispanic*M5   0.104 0.059 
Hispanic*M6   -0.084 0.054 
Hispanic*M7   0.232*** 0.078 
Hispanic*M8   0.176** 0.079 
Hispanic*M9   0.296*** 0.087 
Hispanic*M10   0.086 0.097 
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Continued from previous 
page Estimation 5 Estimation 6 
Variable marginal effect s.e. marginal effect s.e. 
Hispanic*M11   -0.131 0.096 
Hispanic*M12   -0.184* 0.101 
Hispanic*M13-M18   -0.090 0.126 
Hispanic*M19-M22   -0.021 0.127 
Hispanic*M23   -0.219 0.135 
Hispanic*M24   -0.781*** 0.153 
Hispanic*M25-M26   -0.966*** 0.156 
Hispanic*M27   -1.259*** 0.169 
Asian -0.172*** 0.047 -0.174*** 0.048 
Other race -0.110* 0.060 -0.115* 0.060 
Income (log) 0.218 0.472 0.202 0.476 
Income (log)  -0.013 0.022 -0.012 0.022 
squared     
Household size 0.004 0.006 0.002 0.006 
Number of households  0.001*** 0.835E-5 0.001*** 0.850E-5 
Month 2 0.027*** 0.003 0.032*** 0.007 
Month 3 0.037*** 0.004 0.051*** 0.010 
Month 4 0.084*** 0.006 0.084*** 0.013 
Month 5 0.116*** 0.006 0.100*** 0.015 
Month 6 0.174*** 0.007 0.155*** 0.017 
Month 7 0.202*** 0.007 0.187*** 0.017 
Month 8 0.198*** 0.007 0.180*** 0.017 
Month 9 0.215*** 0.007 0.178*** 0.020 
Month 10 0.216*** 0.007 0.214*** 0.019 
Month 11 0.222*** 0.007 0.203*** 0.022 
Month 12 0.249*** 0.006 0.220*** 0.021 
Months 13-18 0.180*** 0.007 0.171*** 0.027 
Months 19-22 0.164*** 0.005 0.150*** 0.029 
Month 23 0.242*** 0.008 0.260*** 0.018 
Month 24 0.283*** 0.006 0.295*** 0.007 
Months 25-26 0.287*** 0.006 0.297*** 0.007 
Month 27 0.287*** 0.006 0.296*** 0.007 
Pseudo-R2 0.3224  0.3296  
N 411,477  411,477  
= significant at the 10% level; ** = significant at the 5% level; *** = significant at the 1% level.  

Notes:  both estimations include local telephone service area fixed effects, not shown in the table.  Standard 

errors are robust to heteroskedasticity and clustering at the block group level. 
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1 We thus do not comment on the methodology of the many important case studies and qualitative analyses 
of the digital divide. 
2 With cross-sectional data, observations are taken from a single period, and the sample comprises different 
individuals, households, or geographic areas.  Cross-sectional data thus provides a point-in-time snapshot 
of the phenomenon under study. 
3 Panel data consist of repeated observations on the same units of analysis in the cross-section. 
4 In this notation, φ is the Normal density function.  Modern statistical software packages can calculate 
marginal effects automatically for probit and logit models. 
5 This simple relationship between the hazard rate and the mean holds only when the former is constant. 
6 The term semiparametric has different meanings in the statistics literature.  Here we mean that the 
baseline hazard is modeled effectively nonparametrically and the effect of the covariates on the hazard rate 
is modeled parametrically. 
7 The nature of our data also lends itself to a discrete-time hazard model (see Kalbfleisch & Prentice, 2002), 
but the results would differ little. 
8 The authors have found both S-Plus and Stata to be particularly easy to use in this regard. We use the 
latter for this article. 
9 Chief among the advantages of the data are the large number of observations, the accurate information on 
the availability of DSL, and the fine geographic detail.  See Prieger & Hu (2008) for a discussion of the 
strengths and weaknesses of these data. 
10 Census blocks are the smallest unit of Census geography, and there are only 23 households in the median 
block in our data. 
11 When estimating the effect of aggregated variables on a dependent variable at a lower level of 
aggregation, standard errors can be artificially small unless corrected by clustering methods.  See Moulton 
(1990) for an illustration of the principles involved. 
12 Initial availability is determined by the first date any household in the local service area subscribes.  
Initial adoption in the block is available in the data.  
13 See Kalbfleisch & Prentice (2002) for a complete discussion of censoring in duration models.  For the 
practitioner, the statistical software takes care of the details. 
14 The difference between the two models is likely to be more pronounced when the mean of the dependent 
variable is near zero or one. 
15 Only those months for which adoption is observed are represented with dummy variables in the 
specification.  With no adoption observed in month 8, for example, the maximum likelihood estimate of the 
coefficient on the month dummy is negative infinity, and the hazard rate is zero for the month.    
16 The adoptions after 22 month all come from a single area in Detroit, the only area with DSL available for 
more than two years.  Thus the results after nine months are likely to be unrepresentative anyway. 
17 The curves are calculated at the mean values of the other variables, which are month-specific in the case 
of the interacted variables. 
18 We cannot estimate a panel fixed effects model by adding a dummy variable for each Census block, 
because only the dependent variable varies over time, and none of the coefficients on the regressors would 
be identified.  We can, in theory, estimate a panel random effects model (in which the intercept for each 
block is treated as a random variable to capture unobserved heterogeneity).  However, our large sample size 
and number of regressors precluded estimation of a panel probit random effects model.  In a half-sample 
version we did estimate, the results for the gender, race, and ethnicity coefficients were similar to that of 
Estimation 5 below. 
19 In the figure, the gap for women is with reference to men, the gap for Hispanics is with reference to non-
Hispanics, and the gap for blacks is with reference to whites. 
20 The probit discrete duration model implies a lognormal, rather than constant, hazard rate within each 
period and has covariate effects that are far from proportional.  Given that within-period hazard rates 
cannot be identified nonparametrically and that assumptions on their shape cannot be tested with discrete 
data, we assume the simplest possible form: constant (Sueyoshi, 1995).  
21 See Report and Order and Further Notice of Proposed Rulemaking, FCC 08-89, released June 12, 2008. 
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