
Pepperdine University Pepperdine University 

Pepperdine Digital Commons Pepperdine Digital Commons 

School of Public Policy Working Papers School of Public Policy 

5-2007 

Are Drivers Who Use Cell Phones Inherently Less Safe? Are Drivers Who Use Cell Phones Inherently Less Safe? 

James Prieger 
Pepperdine University, james.prieger@pepperdine.edu 

Robert W. Hahn 
American Enterprise Institute 

Follow this and additional works at: https://digitalcommons.pepperdine.edu/sppworkingpapers 

 Part of the Public Affairs, Public Policy and Public Administration Commons 

Recommended Citation Recommended Citation 
Prieger, James and Hahn, Robert W., "Are Drivers Who Use Cell Phones Inherently Less Safe?" (2007). 
Pepperdine University, School of Public Policy Working Papers. Paper 2. 
https://digitalcommons.pepperdine.edu/sppworkingpapers/2 

This Article is brought to you for free and open access by the School of Public Policy at Pepperdine Digital 
Commons. It has been accepted for inclusion in School of Public Policy Working Papers by an authorized 
administrator of Pepperdine Digital Commons. For more information, please contact bailey.berry@pepperdine.edu. 

https://www.pepperdine.edu/
https://www.pepperdine.edu/
https://digitalcommons.pepperdine.edu/
https://digitalcommons.pepperdine.edu/sppworkingpapers
https://digitalcommons.pepperdine.edu/pub_pol
https://digitalcommons.pepperdine.edu/sppworkingpapers?utm_source=digitalcommons.pepperdine.edu%2Fsppworkingpapers%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/393?utm_source=digitalcommons.pepperdine.edu%2Fsppworkingpapers%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:bailey.berry@pepperdine.edu


 

 

 

 

Are Drivers Who Use Cell Phones Inherently Less Safe?  

 
 

James E. Prieger and Robert W. Hahn
**

 

 

 

May 2007 

 

 

Abstract 

 
Mobile phone usage while driving is increasing throughout the world.  In this paper, we use survey data 

from 7,268 U.S. drivers to estimate the relationship between mobile phone use while driving and accidents.  We 

hypothesize that drivers who use mobile phones while driving may be more likely to get into accidents than drivers 

who do not, even when they are not using the phone. We find evidence for the endogeneity of mobile phone and 

hands-free device usage, and our analysis suggests that individuals who are more likely to use hands-free devices are 

more careful drivers even without them. Once we correct for the endogeneity of usage, our models predict no statis-

tically significant increase in accidents from mobile phone usage, whether hand-held or hands-free.  Our results call 

into question previous cost-benefit analyses of bans on mobile phone usage while driving, which typically assume 

that such bans will have a salutary effect.   
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I) Introduction 

Mobile phone use is nearly ubiquitous in the developed world.  More than three-fourths 

of the U.S. population owns a mobile phone, and penetration exceeds 95% in Western Europe.
1
  

Many drivers want to use their phone while driving, although concern that such use increases 

accidents has prompted bans in many parts of the world.  Much of Europe has banned the use of 

hand-held mobile phones while driving.  In the U.S., California, Connecticut, New York, New 

Jersey, Washington state, Washington, D.C., and dozens of municipal governments have fol-

lowed suit.  

The goal of such bans is to reduce the number of accidents, but their impact is unclear. 

Although we are not aware of any case study showing that a ban in a particular area has reduced 

the vehicular accident rate, many studies purport to find a link between mobile phone use and 

crashes.  However, no study to date has addressed the obvious question of whether phone use is 

endogenous.  Is the driving of those who choose to use their phones while driving inherently less 

safe than that of drivers who choose not to?  If it is, then the existing cost-benefit analyses of 

mobile phone use while driving (Redelmeier and Weinstein, 1999; Hahn, Tetlock, and Burnett, 

2000; Cohen and Graham, 2003) may be suspect.   

The statistical studies on mobile phone use and accidents (Redelmeier and Tibshirani, 

1997; Violanti, 1998) on which the cost-benefit analyses are based estimate risk of use as a mul-

tiple of an individual’s unknown baseline accident rate.  While the statistical methods (condition-

al fixed-effects) used are robust to endogeneity of mobile phone usage, they cannot reveal 

whether such endogeneity exists.  The cost-benefit analysis literature converts the risk multiples 

to a number of accidents potentially averted by a ban using average population accident rates in 

                                                 
1
 Subscriber data for the U.S. are from CTIA Wireless Quick Facts, December 2006 

(http://www.ctia.org/content/index.cfm/AID/10323).  Subscriber data for Europe is for 2006, from Market Intelli-

gence Center, press release dated 31 January 2007 

(http://mic.iii.org.tw/english/press/research_PR.asp?func=press&Doc_sqno=4641).   
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its calculations.  If individuals who use mobile phones have different baseline accident rates than 

those who do not, however, using average rates to calculate the reduction in accidents from a ban 

would likely yield misleading results.   

In a previous study (Hahn and Prieger, 2006b), we found that the impact of mobile phone 

use on accidents varies across the population.  Samples of drivers who all had accidents are 

therefore composed disproportionately of individuals with large usage effects.  As a result, pre-

vious estimates of the impact of mobile phone use on risk (Redelmeier and Tibshirani, 1997), 

based on accident-only samples, may therefore be overstated for the general driving population 

by about one-third.   

In this paper, we explore whether mobile phone use is endogenous.  The objective is to 

carefully analyze the relationship between mobile phone use while driving and accidents.  We 

hypothesize that drivers who use mobile phones while driving may be more likely to get into ac-

cidents than drivers who do not, even when they are not using the phone.  If so, mobile phone 

users are a selected group of riskier drivers, and valid statistical inference must be based on 

econometric models that correct for the endogeneity of use.  We develop such models and apply 

them to data from a survey of more than 7,000 drivers that provides information on mobile 

phone use and vehicle accidents.  The unique advantages of these survey data—more observa-

tions and more comprehensive than previous studies using data on individuals—are documented 

in Hahn and Prieger (2006b).  

In our econometric models, we assume that collision risk is not only determined by mo-

bile phone usage and other factors, but also by the driver’s type.  The term ―type‖ refers to the 

unique, unobserved propensities of a driver to crash, and includes the influence of driving skill, 

temperament, and proclivity toward distraction on the road.  The driver’s type also affects the 

decision to use the phone while driving.  The inherent type of the driver is not completely cap-
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tured by any characteristics (such as age, sex, or income) that the econometrician observes, 

which raises the question of endogeneity and selection bias for any estimation sample.   

To expand upon this idea, consider the stylized representation of determinants of accident 

risk in Figure 1.  The determinants of collision risk begin with the type of driver on the left.  

Drivers’ types range from very careless to extremely safe drivers.  Figure 1 depicts the unob-

served type affecting the amount of mobile phone usage while driving and whether the driver 

uses a hands-free device.  Usage is also determined by external factors influencing demand for 

calling while driving, such as income and price of usage.  The most natural story, which is sup-

ported by our analysis, is that more careless people are more likely to use the phone while driv-

ing, and less likely to use hands-free devices.  Collision risk is determined by mobile phone us-

age while driving, external factors, and the driver’s type.  A simple observed correlation between 

mobile phone usage and collisions therefore confounds the direct causal effect from usage with 

the effect of the unobserved type.  If riskier drivers are more likely to use mobile phones, then 

simple estimates of the impact on accident rates from mobile phone usage may be biased upward 

due to the common factor of the unobserved type influencing both usage and accidents.       

The data support our hypothesis.  Selection effects due to the endogeneity of mobile 

phone usage appear to be present.  Our models find accident risk from mobile phone usage to be 

smaller in magnitude after correcting for endogeneity than before, and insignificant.  Further-

more, correcting for endogeneity removes all significant effect of hands-free device usage on ac-

cidents, which calls into question bans on hand-held usage (which includes nearly all bans).   

The plan of the paper is as follows.  We review the literature on the effect of mobile 

phone use on driving in the following section.  In section III, we describe our survey data.  We 

report the results of our statistical work in section IV, and conclude in section V. 
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II) Literature Review 

We provide a thorough review of the literature on the effects of mobile phone use on 

driving in Hahn and Prieger (2006b).  In this section, we mention only the seminal study and 

then briefly update the review with recent work.  

There are many studies now on mobile phone use and accidents.  Some use individual or 

aggregate data on actual accidents, while others generate data from controlled experimental stud-

ies (often conductor in a simulator) or ―naturalistic‖ studies (e.g., camera in the car) of drivers.
2
  

Hahn and Dudley (2002) and McCartt et al. (2006) review and critique this literature, and find 

that there is widespread agreement that using a mobile phone while driving increases the risk of 

an accident.  The most influential study among policy makers is Redelmeier and Tibshirani 

(1997), who examine mobile phone records of Toronto drivers who had accidents to determine if 

the driver was using the phone at the time of the crash.  By comparing the individual’s behavior 

to a reference period at the same time the previous day, Redelmeier and Tibshirani (1997) esti-

mate that a driver is 4.3 times as likely to have a collision while using a phone as when not using 

a phone. These results are widely quoted in the media and continue to be widely cited in policy 

discussions about banning phone usage while driving.   

Hahn and Prieger (2006b) point out that there appears to be significant variation across 

individuals in the impact of identical amounts of phone use on accidents.  Thus, Redelmeier and 

Tibshirani’s (1997) methodology does not avoid selection bias, since their method uses only mo-

bile phone users who had accidents, who are the ones with the highest expected impact from 

phone use.  After correcting for this sample selection, Hahn and Prieger (2006b) find that Re-

delmeier and Tibshirani’s (1997) accident multiplier may be overstated by about one-third and 

less precisely estimated than previously thought. 

                                                 
2
 See Hahn and Prieger (2006b) and Lissy et al. (2000) for citations. 
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Other recent studies include Strayer et al. (2006), who find in a simulator lab study that 

impairments associated with using a mobile phone while driving can be as strong as those asso-

ciated with drunk driving.  However, it is uncertain how impairments such as delayed braking 

time found in a traffic simulator translate to actual on-road accidents, especially since crash data 

analyses reveal that the number of crashes that may be attributed to mobile phone use is much 

smaller than experimental studies would predict (NHTSA, 1997).  Commenting on the discrep-

ancy, Esbjörnsson and Juhlin (2003) find that compensatory behavior by drivers in actual traffic 

situations may explain some of the difference.
3
   

McEvoy et al. (2005) replicate Redelmeier and Tibshirani’s (1997) methodology and 

findings with a sample of 456 Australian drivers.  Their accident risk multiple of 4.1 from mobile 

phone usage is similar to that of Redelmeier and Tibshirani’s (1997).  In one of the few experi-

mental studies using drivers in actual conditions, NHTSA (2005) observed ten participants in 

instrumented vehicles with two weeks driving each with no phone use, hand-held use, hands-free 

headset use, and hands-free use with voice dialing.  The study finds no deterioration in measures 

of driving performance from any mode of usage.  Finally, the largest naturalistic study to date 

(NHTSA, 2006) concluded from video observation of 241 U.S. drivers over 18 months that the 

collision risk multiple from dialing is 2.8 and from talking is 1.3 for hand-held mobile phones, 

although the latter is not statistically significant. 

III) The Survey Data 

We use the same survey data collected for Hahn and Prieger (2006b); see that source for 

an extensive description of the strengths and weaknesses of the data.  Here we review the data’s 

salient features. From retrospective survey responses on mobile phone usage and driving pat-

                                                 
3
 Esbjörnsson and Juhlin (2003) demonstrate in an ethnographic study that drivers use a broad range of adaptive 

behaviors when using a phone while driving, to make the talk as safe as possible given the traffic situation. 
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terns, we create a panel data set with 26,572 quarterly observations (October 2001 to September 

2002) on 7,268 individuals.
4
    

Measurement of typical daily or weekly mobile phone usage while driving is categorical: 

no usage, 1-15 minutes per week, 2-20 minutes per day, 20-60 minutes per day, or more than one 

hour per day.
5
  The other usage variable included in the estimations is whether the driver uses a 

hands-free device.  Other variables collected in the survey include data such as annual mileage 

driven, duration and location (rural vs. urban and freeway vs. surface street) of typical commute,  

and demographic data for the drivers and their households.  We discuss additional variables we 

use to control for other factors that can affect accident rates when we present our results. 

Our survey respondents are not a random sample from the population (they chose to be 

recruited into an Internet survey panel). In Hahn and Prieger (2006b), we explore the composi-

tion of the sample.  Summarizing that discussion, we note here that individuals in our sample are 

representative of the population in terms of age and regional distribution, but tend to be from ar-

eas with higher population and income.  Due to an error by the survey administrator, two-thirds 

of the respondents in our sample are female.
6
   We therefore explore single-gender samples in 

our estimations.     

Our estimate of phone use while driving—73% use a mobile phone while driving at least 

occasionally (64% when adjusted with survey weights)—is on the high end of the range found in 

other surveys (see Table 1) from the time.  Thus, underreporting of usage does not appear to be a 

problem.  We also find that (after weighting) 28% of drivers and 44% of those who use a mobile 

                                                 
4
 There is an average of 3.7 quarters per individual, because a quarter is missing if the individual did not drive a 

1999 or newer model year vehicle that quarter.  We removed quarters with older vehicles to homogenize the safety 

features (in particular, the presence of front air bags) among vehicles. 
5
 Typical usage is asked for 2001 and 2002, but the usage variable can also vary quarter to quarter due to when the 

driver used a mobile phone, which is known by quarter. 
6
 Due to an error by the survey administrator, the survey offer was sent to a panel that was balanced with respect to 

general Internet users’ age, Census division, household income and size, and market size, but not on gender.    
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phone while driving use a hands-free device of some sort at least sometimes with their phone 

while driving. 

The accident rates in the sample are shown in Figure 2.
7
  The overall accident rates in our 

sample (5.4% of drivers per year; 6.3% of drivers per year using survey weights) are comparable 

to those of the general driving public in the U.S. (NHTSA, 2004).  Those who use the phone 

while driving have the highest accident rate (5.9% raw, 7.1% weighted).   Those who have a mo-

bile phone but claim they do not use it while driving have a lower accident rate (3.7% in the raw 

data) than those who do not have a mobile phone (4.4%).
8
  The latter may indicate the presence 

of selection effects, if those who could use a phone while driving but choose not to do so are saf-

er drivers.  However, the weighted averages do not differ between these two groups, and the ac-

cident rates do not control for annual mileage or the other factors, so no conclusion can yet be 

drawn.  Figure 2 also shows that drivers who use the phone more or use hands-free devices less 

while driving have higher accident rates (except for the highest category of phone use).  In the 

following section we turn to estimations that control for selection effects and other factors. 

 

IV) Estimations  

Our estimations are from econometric models for panel data on accidents.  The dependent 

variable is the number of collisions in a quarter for a driver.  The explanatory variables of inter-

est are binary indicator variables for average mobile phone usage minutes while driving (none, 1-

15 minutes per week, 2-20 minutes per day, 20-60 minutes per day, or more than one hour per 

day) and usage of a hands-free device while driving (never, sometimes, all the time).  As in much 

of the traffic safety literature, we assume that explanatory variables have a multiplicative effect 

on the mean accident rate.  We present results from simple Poisson models, instrumental varia-

bles estimations, and multiple-equation models.  The latter two allow us to explore the endogene-

ity of mobile phone and hands-free usage.   

                                                 
7
 See also Table 1 of Hahn and Prieger (2006b) for additional summary statistics of the data. 

8
 An equality-of-proportions test for these three categories of users has a two-sided p-value of 0.012.   
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A) Poisson Estimations 

Our first estimation is Poisson regression performed on the pooled data (all quarters and 

all drivers).
9
  In Poisson regression, accidents are modeled as a count variable.  While the Pois-

son model does not include fixed or random effects for panel data, if they are present then Pois-

son regression yields consistent but inefficient estimates.
10

  We calculate standard errors robust 

to the presence of heteroskedasticity and correlation of any kind among an individual’s observa-

tions.  Although the Poisson estimates are inconsistent if mobile phone usage or vehicle choice 

are endogenous, for which we find evidence in the following sections, the estimations in this sec-

tion reveal correlations in the data and provide a baseline useful for comparing with more gen-

eral models that correct for endogeneity.   

The estimation results are presented in Table 2.  Coefficients in a Poisson model are easi-

est to interpret when exponentiated, which yields the ―incident rate ratio‖ (IRR) for the variable.  

For example, if the driver is female, she has exp(Female) times as many expected accidents as 

does a male driver.  Thus, variables that are correlated with higher accident rates have IRR’s 

greater than one.   

The mobile phone usage coefficients represent the incremental risk over not having a 

mobile phone.  If mobile phone usage is not correlated with accident rates, the IRR’s for all the 

usage categories would be 1.0.
11

  In Estimation 1, which controls only for gender, more phone 

usage while driving is associated with higher accident risk for women in our sample.  Redelmeier 

and Tibshirani (1997) also find that mobile phone usage by women appears to be riskier than us-

                                                 
9
 The estimations in this subsection differ from those in section V.B of Hahn and Prieger (2006b) only through in-

clusion of log car weight as an explanatory variable, and our discussion here draws heavily upon our earlier work.  

We include car weight to ensure comparability of Estimations 1 and 2 with the later estimations. 
10

 Consistency in the presence of individual effects, however, requires the effects to be mean independent of the re-

gressors.  See section 3.2.3 of Cameron and Trivedi (1998). 
11

 These risk multipliers cannot be compared directly to Redelmeier and Tibshirani’s (1997) risk multiple of 4.3 or 

McEvoy et al.’s (2005) multiple of 4.1.  Our risk multipliers are for the number of accidents in a year given an aver-

age level of phone usage, whereas the other studies’ risk multipliers imply that the instantaneous accident risk for 

the individual is 4.1-4.3 times as high when using a mobile phone as when not.   



9 

age by men.
12

  The men’s effects are not statistically significant at the 5% level, while for the 

women all categories but that for the lowest usage have significant effects.  The increase in acci-

dent risk for women rises with the amount of usage.  Also, use of hands-free devices is correlated 

with lower accident risk, at least for women.  The IRR for women who always use a hands-free 

device is around 0.5, implying a halving of accident risk.  The average IRR among mobile phone 

users is 1.30.
13

 

Factors other than phone usage may influence accident risk. We include covariates such 

as demographics, weather, and driving variables in Estimation 2.
14

  The estimated effects of mo-

bile phone and hands-free usage on accidents for women remain significant, although they are 

smaller.  The lower average IRR for mobile phone users in Estimation 2, 1.05, indicates that 

some of the correlation between usage and accidents found in Estimation 1 is due to omitted var-

iables such as miles driven and vehicle choice.  Some of the covariates have significant effects.  

Married drivers have lower accident risk.  Younger and older drivers crash more, with the mini-

mum accident risk occurring around age 53.  Full time employment and longer personal com-

muting time are correlated with increased accident risk.  More daylight hours are correlated with 

decreased accident risk.  Car weight has been found in external data sets to be highly correlated 

with (and thus to control for) other vehicle safety variables such as antilock brakes and four-

wheel drive,
15

 and heavier cars are associated with fewer accidents in our sample.  The coeffi-

cient of -0.63 (IRR = 0.53) for log car weight is the elasticity of expected accidents with respect 

to log car weight.  Other variables have expected but insignificant effects:  men have more acci-

dents than women.  Higher annual mileage, local population density, and average local commut-

                                                 
12

 Few studies have examined gender differences in the effect of mobile phone usage.  Briem and Hedman (1995) 

find that men control their vehicles slightly better when using mobile phones on slippery roads than do women in a 

simulator study.  Laberge-Nadeau et al. report higher risk multiples for several types of accidents for women than 

men, but do not address the statistical significance of the difference.  McEvoy et al. (2005) do not find phone usage 

by women to be riskier than usage by men.. 
13

 The average risk multiplier reported is calculated conditional on mobile phone usage and weighted by the fraction 

of drivers in each phone and hands-free device usage category. 
14

 The weather data are from National Climatic Data Center, Database TD3220, and are matched to the household’s 

ZIP code.  Hours of daylight are calculated from the latitude of the ZIP code. 
15

 See, e.g., Kahane (2003), pp. 65 and 126.  The vehicle weights are from the Automotive News Market Data Book, 

various years. 
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ing time are all correlated with higher accident risk.  In Hahn and Prieger (2006b), we estimated 

many other models with alternative sets of explanatory variables and different samples of the da-

ta or weighting schemes, with generally similar results. 

If there is a causal link between hand-held phone usage and accidents, bans restricting 

hands-held usage while driving may be justified.  However, Estimations 1 and 2 are valid only if 

hands-free usage is exogenous, a suspect assumption we explore and reject in the following two 

subsections; therefore, the results here have no significance for policy.       

B) An IV Model for Endogeneity 

We turn now to our hypothesis that the use of mobile phones and hands-free devices 

while driving is endogenous, and show that after controlling for endogeneity, mobile phones do 

not appear to increase accidents and hands-free devices do not appear to reduce accidents.  The 

endogeneity is due to the unobserved type of the driver, which incorporates attitudes toward risk 

and the individual’s degree of carelessness.  The unobserved type is taken to be constant over our 

relatively short time span and fully captured by an individual-specific effect.  We now present 

the notation to clarify our models as we go beyond the basic Poisson model.   

Let i = 1, …, N  index individuals and t = 1, …, T  index quarters.  Denote the number of 

accidents in period t for individual i as y1it , the amount of mobile phone usage as y2it , and log 

car weight (a safety characteristic) of the individual’s primary vehicle as y3it .  Conditional on 

covariates (xit, y2it, y3it) and an individual-specific effect vi, the number of accidents is assumed to 

follow the Poisson distribution with mean 

 E(y1it|xit, y2it, y3it, vi) = s exp('x1it +  'y2it + 'y3it)vi  (1) 

  

where s is 0.25, the period length in years, xit is a vector of exogenous variables, and vi is an un-

observed individual-specific multiplicative effect.
16

  The multiplicative formulation treats the 

                                                 
16

 It is common in vehicle accident studies to perform all analysis on the accident rate per vehicle mile traveled 

(VMT).  In terms of equation (1), this would mean replacing time with VMT as our measure of risk exposure.  Us-

ing VMT as the exposure measure is equivalent to including log VMT as an explanatory variable in equation (1) and 

restricting the coefficient to one.  Given that individuals may not be able to accurately report their VMT, we instead 
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unobservable vi symmetrically with observables y2 and y3.  The coefficient on the mobile phone 

usage variable, , is of primary interest.  The mixing term vi induces heterogeneity into the mean 

accident rate among individuals who are observably similar.  We assume vi may be correlated 

with y2 and y3; in other words, mobile phone usage and vehicle safety may be endogenous.    

The instruments we use for phone usage are inspired by Hausman and Taylor’s (1981) es-

timator for linear models in which endogeneity is due to correlation of a time-varying regressor, 

here mobile phone usage, with the individual-specific effect vi but not the idiosyncratic error pe-

culiar to an individual in a single time period.  In such cases, instruments come from ―inside‖ the 

equation:  the deviations from an individual’s mean of the endogenous regressor over time (e.g., 

iit yy 22  ) will be uncorrelated with the individual-specific error.  We also treat vehicle safety 

choice, as reflected by vehicle weight, as endogenous.  We use weight because there is evidence 

that heavier cars are safer for their occupants in a crash than are lighter cars, so that car weight 

may embody endogenous safety choices.
17

  We instrument for car weight with local gasoline 

prices and weather variables. 

Linear IV methods for additive means and errors are not appropriate for the multiplica-

tive mean and error of accident equation (1).  We instead define appropriate moment conditions 

for (1) and use the nonlinear instrumental variables (NLIV) estimator (Amemiya, 1974).  To re-

cast the Poisson model in the NLIV framework, note that (1) implicitly defines a multiplicative 

model  

 y1it = s exp('xit +  'y2it + y3it) it  (2) 

 

                                                                                                                                                             
include it (measured for the quarter as reported annual VMT divided by four) as an explanatory variable but leave its 

coefficient unrestricted.   
17

 A recent federal study concludes that the heavier the vehicle, the lower the risk of a fatality to any occupant in a 

crash, for all but the heaviest vehicles (Kahane, 2003).  These results were widely reported in the press.  Summariz-

ing other studies on vehicle weight and crash safety, the Los Angeles Times (February 18, 2003, part 3, p.1) con-

cluded that despite conflicting evidence on heavy vehicles and overall fatalities, ―[n]o expert contends that, all other 

things being equal, heavier vehicles aren’t safer for their passengers than are light ones.‖  The association between 

vehicle weight and crash safety has been known for decades; Crandall and Graham (1989) cite many such studies, 

dating back to 1977.  Recent studies indicate that heavier vehicles may crash more, negating their greater safety giv-

en a crash (Gayer, 2004).  However, for vehicle weight to be a good proxy for vehicle safety choice, it is only re-

quired that car buyers believe that heavier cars are safer. 
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where it =  vieit , eit  is a multiplicative error satisfying E(eit|xit, y2it , y3it, vi) = 1 by definition, and 

other notation follows (1) (Windmeijer and Santos Silva, 1997).  The endogeneity of y2 (binary 

indicator variables for the mobile phone and hands-free device usage categories) and y3 (log car 

weight) implies that E(it|xit, y2it , y3it)  1, which precludes Poisson estimation from yielding 

consistent estimates.  As discussed above, we restrict the correlation between y2 and it to come 

only through vi, the individual-specific error.  We place no such restriction on y3.  If instruments 

zit can be found such that E(it|zit) = 1, then E(it  1|zit) = 0 and solving for it from (2) leads to 

the conditional moment condition 

 
 

01
''exp 32

1 
















it

ititit

it z
yyxs

y
E


. (3) 

 

The NLIV procedure minimizes the objective function (  1)'Z'(Z'Z)
-1

Z(  1), in the usual ma-

trix notation, where  is replaced with functions of the data as in (3).  Following our treatment in 

the previous section, we pool the data and adjust standard errors for clustering on individuals.  

The NLIV estimator is consistent as long as (3) holds, even if accidents do not follow a Poisson 

stochastic process, there is additional individual and period-specific heterogeneity, or y2 and y3 

are endogenous. 

The mobile phone usage categories for y2 are collapsed from those used in the Poisson es-

timations into two categories:  1-15 minutes per week and higher amounts of usage.  Grouping 

the higher-usage categories increases the precision of the instrumental variables estimations, be-

cause convergence was difficult to obtain with more finely cut categories.  We treat the decision 

to own a mobile phone as exogenous. 

Following Hausman and Taylor (1981), the instruments include all exogenous variables 

and the deviations from an individual’s mean over time of all time-varying variables (except car 

weight), including y2.
18

  The deviation from average mobile phone use while driving for an indi-

                                                 
18

 Following Windmeijer and Santos Silva (1997), the predicted values of the binary endogenous variables from first 

stage probit regressions are also included as instruments. 
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vidual, iit yy 22  , is a valid instrument for y2it under the maintained assumptions (which we test).  

However, this instrument performs poorly for the men, because the ―within‖ standard deviation 

for mobile phone usage for men is only about two-thirds what it is for the women.  This led to 

difficulty obtaining convergence of the estimator for the combined sample.  Therefore, we esti-

mate the NLIV model only for the women.  Given that Estimations 1 and 2 suggested that im-

pacts of mobile phone use on accidents are not significant for the men, we do not view this as a 

drawback.   

For car weight, the additional instruments are local gasoline price in levels and squares 

and two weather variables:  the number of days with snowfall and total snowfall depth in a quar-

ter.
19

  The gas price is for the MSA, where available, or for the state.
20

  After controlling for 

miles traveled, the price of gas should not affect the accident rate.  Households in areas with 

more snowfall may be more likely to purchase heavier vehicles such as SUVs and other vehicles 

with four-wheel drive and traction control, both of which add to vehicle weight.  As with the 

weather variables included in x, snowfall is measured at the weather station closest to the driver’s 

household.  To ensure the snowfall instruments are properly excluded from the accident equation 

(2), we follow Gayer (2004), who also uses snow-related variables as instruments, and use snow 

measurements at a time other than the current period t.  Here, we use measurements for the same 

season of the non-current year of our sample (i.e., for quarters in 2002 we use snowfall from 

2001, and vice versa).  Given that we already control for current weather in the accident equa-

tion, out-of-period snowfall measurements should not violate equation (3).
21

 

Table 3 contains the estimation results for the NLIV model, as well as for the analogous 

Poisson model with the collapsed phone usage categories.  The mobile phone and hands-free co-

efficients (here, for women) are of greatest interest, given the results of the Poisson estimations.  

                                                 
19

 Gas prices include state taxes and are from Petroleum Marketing Monthly, Energy Information Administration, 

Department of Energy, and Historical Trends in Motor Gasoline Taxes, 1918-2002, American Petroleum Institute. 
20

 A metropolitan statistical area (MSA) is an area defined by the U.S. Census Bureau that includes an urban core 

and the surrounding areas having a high degree of social and economic integration with the core. 
21

 If the two other-year snow variables are included in Estimation 2, they are not statistically significant, evidence 

corroborating (but not proving) that they satisfy the exclusion restriction. 
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Estimation 3 shows a pattern similar to the previous Poisson estimations:  women who use the 

phone more than 15 minutes per week while driving have significantly more accidents (IRR = 

1.65), and women who use a hands-free device all the time have significantly fewer accidents 

(IRR = 0.52).  Once the endogeneity of usage is controlled for in the IV estimation, the picture 

changes markedly.  There is evidence that mobile phone usage and car weight are indeed endog-

enous: Hausman tests soundly reject the null hypothesis of exogeneity at any reasonable signifi-

cance level (see bottom of Table 3).
22

  Importantly, the magnitude of the mobile phone usage co-

efficients drops in the IV estimation.  The IRR for women who use the phone more than 15 

minutes per week while driving falls from 1.65 to 1.19.  Furthermore, neither of the mobile 

phone usage coefficients is significant once we control for endogeneity.   

Regarding hands-free device usage, the IRR for the ―always use‖ category rises to 0.73 

and neither coefficient is significant.  Many other field and laboratory studies have also found 

that use of hands-free devices does not reduce accident risk  (e.g., Redelmeier and Tibshirani, 

1997; Haigney and Taylor, 1999; Crawford et al., 2001; Strayer and Johnston, 2001; and Strayer 

et al., 2003; McEvoy et al., 2005). Together, the results for mobile phone and hands-free device 

usage indicate that a large part of the apparent connection for women between usage and acci-

dents (if not all) in the Poisson estimations is due to endogeneity.  Of less importance for our 

main investigation in this paper, but interesting in its own right, is that the impact of car weight 

switches to increasing accidents in the IV estimation.  This finding is in accord with a recent 

study indicating that heavier vehicles crash more than lighter vehicles after controlling for en-

dogenous vehicle choice (Gayer, 2004).   

IV estimation can lead to misleading inference if the instruments are invalid or weak.  In 

particular, the deviations from average mobile phone usage are invalid instruments if the driver’s 

type changes quarter to quarter.  Note that modeling the endogeneity of mobile phone usage only 

through the individual-specific type vi does not mean that a driver may not experience transitory 

                                                 
22

 The Hausman tests were conducted in comparison to pooled Poisson MLE (Estimation 3).  Alternative Hausman 

tests, comparing the NLIV estimates to estimates from a random effects Poisson MLE, also convincingly reject the 

exogeneity of the mobile phone, hands-free device, and vehicle weight variables. 



15 

recklessness that increases both the propensity to use a mobile phone and to have an accident.  

Rather, it requires that the possibility of such behavior on average during a quarter does not 

change period to period.  We test the validity of the instruments with many tests of the overiden-

tifying restrictions in the models (see bottom of Table 3).  None of these tests reject the null hy-

pothesis that the instruments are valid at conventional significance levels.
23

       

Although formal tests for weak instruments are available for linear IV, these do not apply 

to our model with multiplicative mean and errors.
24

  As noted in Cameron and Trivedi (2005), 

however, formal tests are unnecessary to some extent because weak instruments are easily de-

tected if standard errors are much larger when IV is used.  The standard errors of the IV esti-

mates are generally about twice the size (or less) of the corresponding Poisson standard errors, 

which is better than the performance of IV in many published studies.
25

  Even if the standard er-

rors in the IV estimation were as small as are those in Estimation 3, the coefficients for mobile 

phone and hands-free device usage would still be statistically insignificant. 

C) A Multiple-Equation Model for Heterogeneity and Endogeneity 

The IV model suggests that mobile phone and hands-free device usage is endogenous in 

the accident equation, but does not directly reveal the sign of the correlation between the unob-

served determinants of accidents and phone usage.  In addition, the IV estimates rely on instru-

ments for mobile phone usage from within the accident equation, which is not a commonly used 

                                                 
23

 We report four overidentification tests in Table 3:  an F statistic assuming homoskedastic errors, and three tests 

robust to clustering on individuals:  Hansen’s J statistic, a C statistic to test the mobile phone usage and hands-free 

―deviations from individual mean‖ instruments, and another C statistic to test the gasoline price and weather instru-

ments for car weight (see Hayashi (2000) for details of these tests). 
24

 Informally applying tests for linear IV may give some idea of the strength of the instruments, however.  We exam-

ined F statistics for the hypothesis that the coefficients on the identifying instruments are zero in first stage OLS 

regressions.  The literature on weak instruments suggests that F statistics below the range of five to ten may lead to 

non-negligible finite sample bias in the second stage linear IV estimation (Staiger and Stock, 1997).  The F statistics 

for the endogenous variables are all above 70, with the exception of car weight  (F = 5.0, p-value = 6.2E-13).  These 

F tests are meant to be suggestive only. 
25

 For example, in Levine and Zimmerman (2005), IV standard errors are about five times their OLS counterparts.  

In Cohen and Dehejia (2004), the same multiple is four.  In neither case are weak instruments discussed.  These 

studies were selected by finding the most recent articles (at the time of the search) in The Journal of Public Econom-

ics and The Journal of Law and Economics, respectively, that used IV estimation.  Cameron and Trivedi (2005) use 

a multiple of 10 as an example of weak instruments. 
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method.  In this section, seek to corroborate our findings by  explicitly modeling the endogeneity 

of the use of mobile phones and hands-free devices while driving in a parametric multiple-

equation system.  Our approach here allows us to estimate explicitly the nature of the endogenei-

ty, while relying on parametric identification and the more traditional source of instruments, 

namely variables that do not enter the accident equation.   

Our three equation model adds equations for mobile phone usage and car weight to the 

Poisson accident equation (1), to allow usage and car choice to be endogenous: 

 *
2ity  = 'x2it + u2it (4) 

 

 y3it = 'x3it + u3it (5) 

 

Equation (1) again is the equation for the quarterly accident counts.  Equation (4) is for mobile 

phone usage.  We explore two definitions of y2 in this section:  minutes of use while driving and 

usage of a hands-free device.  Because usage levels are categorical, we impose the ordered probit 

observation rule:  instead of observing the latent, normally-distributed *
2y  in (4), we observe y2, 

which takes one of K discrete values.  Each value of y2 represents a different class of mobile 

phone usage while driving.  In one set of estimations, the classes are the five minutes–of-usage 

categories for phone owners; thus K = 5.  With this definition, equation (4) is present only for 

those individuals who have a mobile phone.  In the other set of estimations, the mobile phone 

usage classes for y2 are the amount of hands-free device usage while driving:  never, sometimes, 

and all the time.  Here K = 3, and (4) is present only for those individuals who both have a mo-

bile phone and use it while driving.
26

  For k = 0,1,…,K-1, the observation rule is  

 y2it = k if 1
*
2  kitk y   (6) 

 

                                                 
26

 In other words, we assume that there is no selection bias caused by the choice to have a phone or not, and that 

selectivity problems arise with choice of hands-free usage only when the individual already uses a phone while driv-

ing.  
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By convention, 0 = ,  1 = , and K = .  The third equation, (5), is for log car weight, 

where y3 is a fully observed normal random variable.   

The errors in equations (1), (4), and (5) are specified as: 

 vi = exp(1i) (7) 

 

 u2it = 2i + 2it (8) 

 

 u3it = 3i + 3it (9) 

 

where the  are correlated across equations but the  are not.  The random effects uit are com-

posed of individual-specific components i and idiosyncratic shocks it.
27

  The vector (2it, 3it) is 

normally distributed with zero mean and covariance matrix  

 







 20

01


   

 

and E(kitljs) = 0 if k  l, i  j, or t  s.
28

  The individual-specific random effect i = (1i,2i,3i) 

is normally distributed with mean ( 22
1 ,0,0) and covariance matrix  

 


















2
332233113

3223
2
22112

31132112
2
1







   

 

and is assumed to be independent of x.
29

  The are independent of  for all individuals and peri-

ods, and E(ij) = 0 if i  j.  With this specification, y2 is endogenous in (1) if 12  0 and y3 is 

endogenous if 13  0.  In addition to the coefficients of interest (1, , ), the model requires es-

timation of nuisance parameters (2, 3, 1
2
, 2

2
, 3

2
, 12, 13, 23, ).

30
  We estimate the mod-

                                                 
27

 Because there is no evidence of heterogeneity in the mean accident rates after controlling for 1i and covariates, 

we do not include an additional random effect 1it in (7).  See Hahn and Prieger (2006a), Appendix B.10, for details 

of the formal tests.  If 1it is added to the model, the estimate of its variance is nearly zero. 
28

 The variance of 2 is fixed for identification in the ordered probit equation. 
29

 The mean of 1 is non-zero so that E[exp(1i)|x1it,y2it,y3it] = 1. 
30

 When y2 takes the definition of hands-free device usage, there is one minor modification to the above.  In this case 

y2 does not vary over time for an individual, so 2 is subsumed into 2 and is dropped from the model. 
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el by MLE.  Given the parametric assumptions, it is possible to find a closed-form expression for 

the density of all quarters of an individual’s observations on (y1it,y2it,y3it) conditional on vi, denot-

ed fi(yi|vi).  The likelihood for MLE is then  

 ln L = )()|(log
1

0
vdFvyf

N

i

iii 




 (11) 

 

where F(v) is the lognormal density of v.  The integral is evaluated numerically and MLE pro-

ceeds as usual; see the appendix for the likelihood function and details.
31

  We have not found this 

random effects panel Poisson-ordered probit-normal model developed elsewhere in the literature, 

but we use standard techniques to solve for the likelihood of multiple equation models for mixed 

continuous and discrete variables. 

The covariates for the accident equation (1) are similar to those of Estimations 2-4.  We 

use two sets of covariates for x2 in (4), the mobile phone usage equation.  The ―small set‖ con-

tains several variables also included in x1 (age, mileage, commute length, drive mostly on free-

ways, employment status, gender, and marital status), and some that are not.  These latter ―in-

struments‖ are variables that potentially affect prices, quality, and competition in the mobile 

phone service market.
32

  When competition is stronger, mobile phone service providers may of-

fer lower prices, higher service quality, and may be more likely to offer hands-free devices with 

subscription, all of which may be correlated with minutes of use and hands-free device usage.  

Our mobile phone market variables are the cellular antenna site density within 25 miles of the 

                                                 
31

 This estimation problem is also a candidate for simulated maximum likelihood.  However, given that expectation 

need be taken over a univariate random variable only, numerical integration of the likelihood via Gauss-Hermite 

quadrature is tractable and yields more precise estimates than simulation.  
32

 Unlike linear systems of equations, there are no exclusion restrictions for x1; the Poisson parametric assumption 

alone identifies the coefficients in (1).  Thus, x2 and x3 need not contain variables not found in x1, even when y2 and 

y3 are endogenous in (1).  Due to the tenuous nature of identification solely through functional form, we do not rely 

on this to identify the system but instead use the instruments discussed here. 
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household,
33

 and two industry cost shifters:  the average wage in the cellular industry, and the 

average electricity price in the state.
34

  The small set also includes whether the household has 

cable TV service, a variable related to willingness to adopt modern communications technology.  

The second, larger set of covariates for x2 includes the small set plus additional demo-

graphic variables that may influence phone and hands-free device usage:   race and ethnicity in-

dicators, household size, income, and whether the driver got married in the last two years.  None 

of these variables appear in x1, but their exclusion may be harder to defend than for the excluded 

variables in the small set.  For x3 in the car weight equation (4), we use age and age squared, 

marital status, commute length, and two variables not included in x1: gas price in levels and 

squares.  In addition to this small set of covariates, we also use a larger set of covariates for x3.
35

  

All equations include region and quarter fixed effects. 

To test for the endogeneity of mobile phone use and car weight in the accident equation, 

we first define y2 to be mobile phone usage minutes while driving.  Based on estimations for var-

ious samples (men and women separately and together) and using both the small and large sets of 

instruments, we cannot reject the hypothesis that there is no endogeneity in the accident equa-

tion.  The endogeneity parameters 12 and 13 are statistically insignificant.  This is in contrast to 

IV estimations above, in which there is evidence that usage is endogenous, and the failure to re-

ject exogeneity here may indicate that our statistical tests have low power in this model.  The es-

timated mobile phone effects differ little from the corresponding Poisson estimations and we do 

not report the results here.   

                                                 
33

 This variable was constructed by taking the number of cellular antenna sites within 25 miles of the household’s 

location (as proxied by their five digit ZIP code centroid), and dividing by the population of all Census tracts that 

overlap with that circle.  The antenna data are from the FCC’s cellular tower registration database. 
34

 The county average wage is used when available, and the state average is used when not.  Data are from the U.S. 

Bureau of Labor Statistics. The electricity price data are from  the Energy Information Administration, U.S. De-

partment of Energy. 
35

 The variables new to the large set are racial and ethnicity indicators, income, home ownership, additional em-

ployment status indicators, and the household size.  They are significant in OLS estimations with log car weight as 

the dependent variable. 
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However, when we switch the role of the second equation and let it represent usage of a 

hands-free device, we confirm that usage is endogenous.  In this model, only usage of hands-free 

devices is treated as endogenous in the accident equation.  Use of a hands-free device may be 

endogenous if, for example, drivers that are inherently more careless are also less likely to use a 

headset while speaking on the phone.  Estimation results are presented in Table 4.
36

     

Of most interest from the estimations are the following results.  The correlation between 

the accident equation and the hands-free equation, 12, is large and negative in every specifica-

tion we tried, regardless of the instrument set or sample used.  A finding of negative correlation 

between 1 and 2 implies that unobserved factors that make an individual more likely to use a 

hands-free device also make the individual a safer driver, independent of any causal effect of 

mobile phone usage mode.  Stated less technically, drivers who choose not to use a hands-free 

device are worse drivers to begin with.  Results regarding the statistical significance of the nega-

tive correlation vary across specifications, but the preponderance of the evidence leads us to re-

ject the hypothesis that use of hands-free devices is exogenous.
37

 

There is no evidence of significant reductions in accidents from the use of hands-free de-

vices, as opposed to the large effects found in Estimations 1 and 2, in which 12 is constrained to 

be zero.  This corroborates our similar finding in the IV estimation.  In fact, the IRR’s for the 

hands-free variables are all greater than one.  None of these IRR’s is statistically significant, but 

it may be that some aspects of hands-free device usage lead to greater driver inattention.
38

   

                                                 
36

 Coefficients for the mobile phone and car weight equations are not reported in Table 4, but generally had plausi-

ble signs.  See Table B.13.5 in Appendix B.13 of Hahn and Prieger (2006a). 
37

 For the male sample, t tests of 12 = 0 have p-values below 0.001.  The LR statistics testing the full models vs. 

their restricted counterpart lacking heterogeneity and correlation (see the appendix for details) also have p-values 

less than 0.001. For the female sample, the t tests do not have small p-values but the LR statistics do.  In combined 

gender estimations (results reported in Hahn and Prieger (2006a)), t tests of 12 = 0 have low p-values (below 0.01) 

when the large set of instruments is used but not the small set.  For both instrument sets, the LR statistics have p-

values less than 0.001.   
38

 For example, a consumer review of several hands-free devices found that fumbling with putting on a headset 

when answering a call and the poor audio quality of some hands-free phones may be more distracting than using a 

handset (Susan Stellin, ―Hands-Free Calling Options for the Road,‖ New York Times, July 26, 2001, p.G9).    
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We also find that when hands-free usage is treated as endogenous, the effects of minutes 

of mobile phone usage while driving are smaller for the women than in the simple Poisson mod-

els.  In Estimations 6 and 8, the IRR’s for minutes of usage are lower for each variable than in 

Estimations 1 and 2.  Finally, the correlation between the accident equation and the vehicle safe-

ty equation is generally estimated to be positive, implying that drivers choosing heavier cars 

have a higher baseline accident rate to begin with.   

We also explored IV estimations as in the previous section, but using the instruments 

from this section instead of the deviations from an individual’s mean over time of the time-

varying variables.  This avoids the parametric assumptions of our three-equation model.  The re-

sults, reported in Hahn and Prieger (2006a), lead to similar conclusions as Estimations 4-8.  Ex-

ogeneity tests confirm that usage is endogenous.  When the usage and vehicle weight variables 

are treated as endogenous, all significance of the impacts of the mobile phone minutes of usage 

variables goes away (whether using the small set or the large set of instruments).  Also, the mag-

nitude of the female mobile phone effects fall to modest levels, and the large reduction in acci-

dents due to the use of hands-free devices by women implied in Estimations 1 and 2 disappears.  

These IV results confirm the findings from the multiple-equation models that selection is present 

and that correcting for endogeneity removes all certainty about the impact of usage on accidents 

(in the sense of statistical significance).   

V) Conclusion 

Our approach for estimating the relationship between mobile phone use while driving and 

accidents is the first to test for the endogeneity of mobile phone and hands-free device usage.  

We find evidence of selection effects. Our analysis suggests that individuals who are more likely 

to use hands-free devices drive more carefully even without them.  Once we correct for the en-

dogeneity of usage, our models predict no statistically significant increase in accidents from mo-

bile phone usage, whether hand-held or hands-free.  The results here join our earlier work (Hahn 
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and Prieger, 2006b) in calling into question previous cost-benefit analyses of bans on mobile 

phone usage while driving.  Unlike our approach in Hahn and Prieger (2006b), the models here 

do not explicitly include random coefficients for usage.  However, if they are present, then our 

IV estimates of the mobile phone effect are still consistent for the average effect under plausible 

assumptions (see the appendix).  

Because we find there is more uncertainty than previously suggested in the relationship 

between mobile phone use while driving and accidents, cost-benefit analyses of different types of 

proposed bans should reflect this uncertainty. In addition, policy makers should treat the results 

of cost-benefit analyses with care.  

Ironically, many policy makers treat the link between mobile phones and accidents as 

well established. For example, in a statement on legislation restricting mobile phone usage while 

driving in California, a state legislator (apparently referring to Redelmeier and Tibshirani (1997)) 

avowed, ―Study after study has shown that people who use cell phones while they’re driving are 

four times as likely to get into an accident.‖
39

  Another legislator pronounced that ―the difference 

between hands-free and hand-held is life and death.‖
40

 Yet, there is little scientific evidence to 

suggest that hands-free usage is actually safer while driving, and our results suggest that it is not.  

In reality, the case for regulation may be less clear now than it was five years ago.  How-

ever, our results do not imply that no restrictions should be placed on drivers using mobile 

phones.  Instead, we provide additional considerations and evidence that policy makers should 

consider before regulating.  

 

                                                 
39

 California state senator Debra Bowen, speaking in support of SB 1582, quoted in The San Diego Union-Tribune, 

May 29, 2004, p. B-8.  
40

 Statement of May 26, 2006 from the office of state Senator Joe Simitian, speaking in support of the recently en-

acted ban on hand-held usage in California. 
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Appendix 
This appendix contains additional information on the data and estimations.  Other 

supplementary material, including the survey instrument, can be found in Hahn and Prieg-

er (2006a). 

A.1      Likelihood of the Multiple Equation System 

Here we present the likelihood for the model defined in equations (1) and (4)-(9), a three-

equation random effects system for count data with endogenous ordered and continuous varia-

bles.  The notation in the main text does not reflect the differing frequency of observation in the 

data. The accident counts for the first equation and the car weights in the third equation are ob-

served each quarter. The mobile phone usage variables y2 are observed yearly and the time sub-

script for u2it and 2it is for the calendar years in the sample (2001 and 2002). Collect the random 

effects into column vectors u2i = (u2i1, u2i2)′ and u3i = (u3i1, . . ., u3i4)′ and define  u1i = 1i. Here 

the likelihoods are derived for all four quarters of data; in implementation the likelihood is modi-

fied appropriately for missing quarters of data. Define ui = [u1i, u′2i, u′3i]′. Then var (ui) is 

var [ui] =























44

2

34

2

32232443113

32234222

2

222112

431132112

2

1







I

I  

11 12 13

21 22 23

31 32 33

u u u

u u u

u u u

   
 

   
 
      

where ιk is a k-row column vector of ones and Ik is a k-rank identity matrix.   

The observed data for an individual is y1i = (y1i1, . . . , y1i4)′, y2i = (y2i1, y2i2)′, y3i = 

(y3i1, . . . , y3i4)′. To simplify notation, drop the i subscripts from here on. The joint density of the 

data conditional on 1u , )|,,( 1321 uyyyf , is 

),,|()|,()|,,( 13211321321 uyyyfuyyfuyyyf   

where 

* *

2 3 1 3 1 2 1 3 2( , | ) ( | ) ( | , )f y y u f y u f y u y dy      (A.1) 
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All densities are to be read as conditional on the x covariates. The limits of the rectangular 

integration region in (A.1) are the appropriate κ’s for the value of y2t for year 1 and year 2, 

based on (6). In (A.2) and (A.3), p(µ, Σ) is the p.d.f. of a p−variate normal r.v. with mean 

vector µ and covariance matrix Σ.  If the individual does not have a mobile phone in any 

period in a year, there is no selection equation for minutes of usage and the integral pertain-

ing to that year in (A.1) drops out. 

The likelihood for the data is then found as (11), where the integral there 

can be written 
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This integral is evaluated for each i by Gauss-Hermite quadrature with 16 evaluation 

points. MLE is performed using the BFGS variant of the DFP algorithm with numerical de-

rivatives in FORTRAN. 

When y2 represents hands-free device usage, minor modifications are required.  First, the 

hands-free usage question is asked once for all quarters, so a period-specific error in (8) is re-

dundant with α2i  and ε2it  is dropped.  Furthermore, with a single observation per individual on y2, 

the integral in (A.1) becomes unidimensional and σ2 is no longer identified and is fixed to unity. 

Finally, if the individual does not use a mobile phone while driving in any period, there is no se-

lection equation for hands-free device usage and the integral in (A.1) drops out. 

A.2     LR Tests of the Parametric Models 

The likelihood ratio tests of the parametric models mentioned in the text are non-standard 

because they involve parameters on the boundary of the parameter space and because some of 

the nuisance parameters appear only under the alternative hypothesis.  The null hypothesis for 

the tests for the ML models is H0: 1 =3 = 0 vs. HA: 1 > 0, 3 > 0, (1,1)
3
.  

Under the null, 1 and3 are on the boundary of the parameter space and  is a nuisance parame-

ter that appears only under the alternative.  Test statistics with parameters appearing only under 

the alternative hypothesis have complicated distributions in general (Andrews, 2001), whereas 

parameter-on-the-boundary (PB) problems with all parameters appearing both under the null and 

the alternative hypotheses generally lead to simpler distributions.  Using techniques from King 

and Shively (1993), we therefore transform this test through reparameterization into a simpler PB 

problem so that the test statistic is a mixture of chi-squares.  Appendix B.11 in Hahn and Prieger 

(2006a) contains details. 

A.3 NLIV and Random Coefficients 

The moment condition (3) for NLIV is still valid if the usage coefficients are random, as 

modeled in Hahn and Prieger (2006b).  In that case, driver i’s vector of coefficients for mobile 

phone usage is ii     where   is the mean coefficient vector and i is a scalar that repre-
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sents i’s departure from the average mobile phone coefficients.  Because i is scalar, the ran-

domness in the usage effects is symmetric across usage classes.  Then (2) can be written s 

exp'xit  +  'y2it + y3itit, with it = itexp(idit), where dit is an indicator that usage is not in 

the excluded category.  If instead of E(|z) = 1 the slightly stronger assumption that 

E(exp(d)|z) = 1 is satisfied, then  E(|z) = 1 and moment condition (3) is valid with  replacing 

.  The assumption requires that not only are deviations from an individual’s mean of y2 over 

time not systematical related to the individual-specific error v, they are also unrelated to the indi-

vidual-specific random part of the coefficient, .  Given that both v and  are time-invariant, 

they both reflect the driver’s type, and it is reasonable to assume that the same instruments are 

valid for both.  If this assumption is not satisfied, it would (in principle) be detected by the overi-

dentification tests reported in Table 3.   
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Table 1:  Estimates of the Proportion of Drivers Using Mobile phones and Hands-

Free Devices while Driving 

 
 Authors’ survey Other sources surveyed 

in Hahn and Prieger 
(2006b) 

 
Raw average 

Weighted  
average 

 
Oct 2001— 
Sept 2002 

Oct 2001— 
Sept 2002 

Nov 2000—Nov 2003 

% of drivers who use a mobile 
phone while driving, out of… 

   

All Drivers 73 64 30-59 
Drivers who Have a 
Mobile phone 

86 82 43-89 

% of drivers who use HF  
device while driving, out of… 

   

All Drivers 30 28 23 
Drivers who Have a 
Mobile phone 

41 44 28 

 

Table notes:  In the authors’ survey, figures for mobile phone use are the percentage of the re-

spondents who chose an answer other than ―none‖ to ―During [the time period in question], how 

many minutes did you typically talk on your mobile phone while driving?‖  Weighted average is 

calculated using survey weights.   
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Table 2:  Accidents:  Poisson Estimations 

 

 Estimation 1 Estimation 2 

 IRR P-value IRR P-value 

Men:  have phone, no use 1.073 0.839 1.243 0.525 

Men: 1-15 mins/week, 1.134 0.651 1.054 0.853 

Men: 2-20 mins/day 0.899 0.757 0.726 0.380 

Men: 20-60 mins/day 1.232 0.598 0.995 0.991 

Men: > 1 hr/day 0.204 0.133 0.212 0.147 

Women:  have phone, no use 0.705 0.279 0.753 0.405 

Women: 1-15 mins/week, 1.273 0.282 1.168 0.492 

Women: 2-20 mins/day 1.898** 0.016 1.323 0.298 

Women: 20-60 mins/day 3.269*** 0.000 2.212*** 0.008 

Women: > 1 hr/day 3.714*** 0.001 2.591** 0.018 

Men:  hands-free some 1.506* 0.096 1.240 0.396 

Men:  hands-free always 1.202 0.473 1.076 0.788 

Women:  hands-free some 0.973 0.886 0.890 0.543 

Women:  hands-free always 0.520*** 0.006 0.494*** 0.003 

Female 0.759 0.353 0.883 0.679 

Car weight (log)   0.533** 0.028 

Married   0.721** 0.013 

Children in household   1.213 0.130 

Age   0.904*** 0.000 

Age Squared   1.001*** 0.000 

Income (log)   1.005 0.952 

Work Full Time   1.472*** 0.005 

Miles driven (log)   1.138 0.112 

Commute time (log)   1.153** 0.018 

Rural freeways   0.830 0.283 

Urban surface streets   1.142 0.305 

Rural surface streets   0.592 0.130 

Area pop. density (log)   1.097 0.120 

Area commute time (log)   1.208 0.741 

Precipitation days   0.993 0.687 

Snow days   0.976** 0.046 

Days below freezing   0.996 0.528 

Hours of light daily   0.602** 0.021 

     

Average mobile phone IRR 1.303  1.050  


 statistic (dof) 95.6 (57) 0.001 229.8 (75) 0.000 

Log likelihood -1854.93 -1703.66 

N 26,572 25,243 

* and ** denote significance at the 5%, and 1% level, respectively.  

Notes:  Dependent variable is the quarterly traffic accident count for an individual.  Both specifications 

include quarter and state fixed effects.  Sample covers Q4 2001—Q3 2002.  Excluded mobile phone 

dummy is ―no phone‖.  IRR is estimate of the incident risk ratio, exp().  P-values based on standard er-

rors robust to heteroskedasticity and clustering on individuals.  Average mobile phone IRR is the average 

IRR from the mobile phone and hands-free device variables, weighted by the number of drivers in each 

phone and hands-free device category. 
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Table 3:  Accidents:  Poisson and IV Estimations (Female Sample) 
 

 Estimation 3 (Poisson) Estimation 4 (IV) 

 IRR P-value IRR P-value 

Women:     
Have phone, no use 0.776 0.450 1.042 0.940 
Use phone 1-15 mins/week 1.193 0.465 1.130 0.780 
Use phone > 15 mins/week 1.646* 0.064 1.187 0.750 
Hands-free device: some 0.909 0.632 0.635 0.185 
Hands-free device: always 0.525** 0.015 0.729 0.504 

Car weight (log) 0.417** 0.017 7.373*** 0.006 

Married 0.685** 0.020 0.639 0.127 

Kids in household 1.189 0.309 0.980 0.955 

Age 0.307*** 0.000 0.189** 0.015 

Age squared 1.125*** 0.001 1.179** 0.028 

Income (log) 1.086 0.567 0.941 0.808 

Work full time 1.515** 0.020 1.429 0.232 

Miles driven (log) 1.156* 0.088 1.193 0.132 

Commute time (log) 1.077 0.391 1.121 0.469 

Rural freeways 0.929 0.728 0.979 0.957 

Urban surface streets 0.956 0.798 0.846 0.604 

Rural surface streets 0.603 0.251 0.385 0.115 

Area pop. density (log) 1.134* 0.092 1.169 0.268 

Area commute time (log) 0.654 0.539 0.499 0.597 

Precipitation days 0.996 0.814 0.978 0.521 

Snow days 0.987 0.533 0.938** 0.030 

Days below freezing 0.993 0.236 0.999 0.945 

Hours of light daily 0.885** 0.038 0.916 0.430 
       
 distribution statistic p-val distribution statistic p-val 


2 

statistic (Wald test)  
2
(24) 1,661.0 0.000 

2
(24) 1069.5 0.000 

OverID test statistic 1 (F)    F(16,16936) 1.05 0.598 

OverID test statistic 2 (J)    
2
(16) 21.6 0.156 

OverID test statistic 3 (C1)    
2
(3) 2.44 0.487 

OverID test statistic 4 (C2)    
2
(4) 7.00 0.135 

Exogeneity test statistic 1    
2
(23) 64.7 0.000 

Exogeneity test statistic 2    
2
(5) 29.2 0.000 

N 16,961 16,961 

*, **, and *** denote significance at the 10%, 5%, and 1% level, respectively.  

Notes:  Dependent variable is the quarterly traffic accident count for an individual.  Standard errors, p-

values, and test statistics are robust to heteroskedasticity and clustering on individuals, except for OverID 

test statistic 1.  Neither specification includes time or state fixed effects.  The Wald test is for the joint 

significance of all coefficients.  Each OverID test statistic tests the null hypothesis that the identifying 

instruments are uncorrelated with the error term and are correctly excluded from equation (2).  Statistic F 

assumes homoskedastic errors.  Statistic J is Hansen’s J statistic and is robust to heteroskedasticity and 

clustering on individuals.  Statistic C1 tests only the mobile phone usage instruments and statistic C2 tests 

only the instruments for car weight.  The Exogeneity test statistics are for the Hausman test that the mo-

bile phone, hands-free, and vehicle weight variables are exogenous.  Hausman test statistics are with ref-

erence to Estimation 3.  Hausman statistic 1 tests all coefficients except the constant; statistic 2 tests only 

the coefficients for the variables treated as endogenous.  See also notes to Table 2. 
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Table 4:   Accidents, Hands-free Device Usage, and Vehicle Safety:  Three Equation MLE 
 

    Small set of instruments Large set of instruments 

  Estimation 5 Estimation 6 Estimation 7 Estimation 8 
  Men Women Men Women 

Coefficient and Variable IRR P-value IRR P-value IRR P-value IRR P-value 

1 Have phone, no use 1.230 0.632 0.741 0.418 1.232 0.627 0.735 0.405 

1 Use phone 1-15 mins/week, 0.809 0.539 1.005 0.988 0.831 0.584 1.035 0.907 

1 Use phone 2-20 mins/day 0.498 0.162 1.115 0.776 0.516 0.154 1.163 0.681 

1 Use phone 20-60 mins/day 0.621 0.423 1.745 0.201 0.654 0.437 1.858 0.136 

1 Use phone > 1 hr/day 0.126* 0.084 1.488 0.594 0.133* 0.086 1.626 0.502 

1 Hands-free device: some 1.949 0.300 1.670 0.522 1.900 0.210 1.456 0.573 

2 Hands-free device: always 2.583 0.319 1.246 0.862 2.455 0.216 1.001 0.999 

 CarWgtLn 0.044 0.286 0.278 0.622 0.061 0.169 0.753 0.833 

 Other controls as in RF3 yes  yes  yes  yes  

 Average mobile phone usage 
IRR 

1.172 1.141 

          

  parameter  parameter  parameter  parameter  

1
2
  0.759 0.255

†
 0.666* 0.071

†
 0.684 0.173

†
 0.630* 0.061

†
 

12  -0.544*** 0.002 -0.658 0.408 -0.587*** 0.000 -0.540 0.471 

13  0.774*** 0.000 0.140 0.857 0.766*** 0.000 -0.192 0.650 
 LR statistic 1.68E04 0.000 3.61E04 0.000 1.66E04 0.000 3.54E04 0.000 
 Log likelihood 7,516.5 16,597.8 7,557.6 16,752.0 
 # individuals 2,256 4,612 2,256 4,612 
  # observations 8,144 16,720 8,144 16,720 

 
†
One sided p-value. 

*, **, and *** denote significance at the 10%, 5%, and 1% level, respectively.  

Table notes:  Dependent variables are the quarterly traffic accident count for an individual, hands-free device category of usage, and 

log vehicle weight.  LR statistic is the likelihood ratio statistic for test H0: 1
2
 = 3

2
 = 0 vs. HA: (1

2
,3

2
) > 0, (12,13,23)  (-1,1)

3
.  It 

has a non-standard distribution; see the appendix for details.  Estimated but not reported: the rest of 1 (for the other controls included 

as in Estimation 2 [including time fixed effects but with region indicators replacing state fixed effects]) and (2,, ).  Likelihood is 

calculated via Gauss-Hermite quadrature (see the appendix).  The standard errors account for the panel structure of the data.  Average 

mobile phone usage IRR is the average IRR from the mobile phone and hands-free device variables, weighted by the number of driv-

ers in each phone/hands-free device category.  See notes to Table 2 on IRR.   
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Figure 1:  Factors Affecting Collision Risk (Model 1) 
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Figure 2:  Yearly Accident Rates in the Sample 
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