10-1-2012

The effect of leaf trichome density on stem mechanical strength in Salvia leucophylla, S. mellifera, and S. apiana

Brieanna English
Pepperdine University

Jeff Scanlon
Pepperdine University

Anushree Mahajan
Pepperdine University

Follow this and additional works at: http://digitalcommons.pepperdine.edu/sturesearch

Part of the Plant Biology Commons

Recommended Citation
http://digitalcommons.pepperdine.edu/sturesearch/51

This Research Poster is brought to you for free and open access by the Undergraduate Student Research at Pepperdine Digital Commons. It has been accepted for inclusion in All Undergraduate Student Research by an authorized administrator of Pepperdine Digital Commons. For more information, please contact Kevin.Miller3@pepperdine.edu.
The effect of leaf trichome density on stem mechanical strength in Salvia leucophylla, S. mellifera, and S. apiana.

Brianna English, Jeff Scanlon, Anushree Mahajan
Pepperdine University, Malibu, CA, 90263

Abstract
Salvia species in southern California exhibit a variety of leaf trichome densities. S. mellifera, S. leucophylla, and S. apiana were chosen as study organisms because they exhibit varying trichome densities. A UniSpec was used to measure NDVI in leaves and an Instron was used to measure stem mechanical strength. This study provides preliminary evidence that suggests plants with high leaf trichome density have less stem mechanical strength, and those with low leaf trichome density have greater mechanical strength. Data generated from this study supports the idea that this may be a general and loose trend amongst plant families similar to Lamiaceae.

Introduction
In the natural world, resources are always limited. Resource allocation, therefore, is important for all living organisms to deal with one way or another—it is a game of economics. In the Mediterranean-type climate, little rainfall creates high water stress for vegetation. Interestingly, many studies have shown that Mediterranean-type vegetation is well adapted to tolerate water stress. Amongst Salvia species in southern California, Salvia mellifera, Salvia leucophylla, and Salvia apiana are very common. The three different species are aptly called black, purple, and white sage respectively. Their unique colors are partially influenced by leaf trichome density.

Plant trichomes are anatomical adaptations that may benefit the plant in many ways. It is suggested that just one of these benefits is that leaf trichomes increase the water stress tolerance of a plant. The trichomes likely create several insulating layers above the stomata. When water transpires from the stoma, the water vapor normally escapes into the atmosphere. When trichomes are present, the water vapor doesn’t escape freely, but rather remains in a small pocket of air between the leaf surface and the trichome layers. These layers may have a much higher relative humidity than the surrounding atmosphere in result. If these layers surround the stomata, the higher relative humidity decreases water stress by allowing water vapor to transpire from the leaf at a slower rate. Other studies have shown plant mechanical strength to increase resistance to cavitation caused by water stress. Within the Salvia family, we predict that S. mellifera has allocated more resources to building xylem fibers (and thus has higher mechanical strength) than S. apiana and S. leucophylla, which have instead invested their resources in leaf trichomes.

Results

Figure 1: The average Normalized Difference Vegetation Index (NDVI) of Sm, Sa, and Sl – which assesses whether the sample being observed contains live green vegetation or not.

Figure 2: A generated Hair Index (HI) from the collected NDVI data. This data reflects the area of the graph (550-630nm) that demonstrated significant difference (Figure 4) between Sm, Sa and Sl.

Figure 3: Comparison of stem MOE among Sm, Sa and Sl by one way ANOVA followed by a Fisher’s Least Significant Difference Test. The letters indicate significant difference at p<0.05.

Figure 4: Comparison of mean Modulus of Rupture with bark (MORB) between Sm, Sa and Sl.

Figure 5: Illustrates the leaf trichome density and mechanical strength.

Figure 6: Measure of light reflectance b versus wavelength the UniSpec in leaves of Sm (dark blue), Sa (light blue) and Sl (green)

Discussion
An ANOVA test comparing NDVI of the three Salvia species yielded P<0.0001, which is highly significant. The ANOVA test comparing HI of the three species yielded the same results. NDVI and the Hair Index we generated targeted reflectance at wavelengths between 550 and 630 nm (green light). The statistical significance of the ANOVA tests shows that S. mellifera has a much “greener” leaf than both S. leucophylla and S. apiana. The comparatively lower reflectance values of S. leucophylla and S. apiana at this wavelength range indicate a higher level of leaf trichomes on these species. Thus, our ANOVA analysis may be extrapolated to suggest that there are significant differences in leaf trichome density between S. mellifera and the other two species. The Fisher’s Least Significant Difference post-hoc test confirms that there was a significant difference between NDVI and HI of S. mellifera and that of S. leucophylla and S. apiana, but there was no statistically significant difference between S. leucophylla and S. apiana.

An ANOVA test for the mechanical strength data collected yielded similar results. S. mellifera had significantly greater MORB than both S. leucophylla and S. apiana (P<0.0001). S. mellifera also had significantly greater MOE than S. apiana (P<0.0079), but did not have significantly greater MOE than S. leucophylla (P=0.0749).

Conclusion
S. mellifera leaves have significantly less trichome density compared to that of S. apiana and S. leucophylla leaves. S. mellifera significantly greater stem mechanical strength than that of S. apiana and S. leucophylla stems.

Economic principals of resource allocations suggest that many plants face this type of trade-off in which leaf trichome density varies inversely with stem mechanical strength. Figure 5 supports this idea. We anticipate that S. apiana leaves have greater trichome density than S. leucophylla leaves. Our study shows they are very similar. Refined methods should be used to compare these two species in future studies.

Acknowledgements
We would like to acknowledge Dr. Davis for his advice and assistance and Pepperdine Natural Science Division for its facilities and resources.